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1.1 Authentication schemes, (a) Traditional schemes use ID 
cards, passwords and keys to vahdate individuals and ensure 
that system resources are accessed by a legitimately enrolled 
individual, (b) With the advent of biometrics, it is now pos­
sible to establish an identity based on "who you are" rather 
than by "what you possess" or "what you remember". 

1.2 Examples of biometric traits that can be used for authenticat­
ing an individual. Physical traits include fingerprint, iris, face 
and hand geometry while behavioral traits include signature, 
keystroke dynamics and gait. 

1.3 The Bertillonage system, so named after its inventor Alphonse 
Bertillon, relied on the precise measurement of various at­
tributes of the body for identifying recidivists. These mea­
surements included the height of the individual, the length 
of the arm, geometry of the head and the length of the foot. 
The process was tedious to administer and did not guarantee 
uniqueness across individuals. 

1.4 A variety of fingerprint sensors with different specifications 
(e.g., sensing technology, image size, image resolution, im­
age quality, etc.) are now available. These rather compact 
sensors may be embedded in computer peripherals and other 
devices to facilitate user authentication. 

1.5 Enrollment and recognition (verification and identification) 
stages of a biometric system. The quality assessment module 
determines if the sensed data can be effectively used by the 
feature extractor. Note that the process of quality assessment 
in itself may entail the extraction of some features from the 
sensed data. 
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1.6 Multiple feature sets of the same biometric trait seldom result 
in an exact match. Here, three fingerprint impressions of a 
person's finger (left) and the corresponding minutia points 
(right) are shown. Due to variations in finger placement, 
elasticity of the skin and finger pressure, the minutiae dis­
tributions of the three impressions are observed to be quite 
different. A perfect match between two samples of the same 
finger is almost impossible to achieve. 11 

1.7 The genuine and impostor distributions corresponding to the 
Face-G matcher in the NIST BSSRl database. The thresh­
old, 77, determines the FAR and FRR of the system. Note that 
given these two distributions, the FAR and the FRR cannot 
be reduced simultaneously by adjusting the threshold. 13 

1.8 The performance of a biometric system can be summarized 
using DET and ROC curves. In this example, the perfor­
mance curves are computed using the match scores of the 
Face-G matcher from the NIST BSSRl database. The graph 
in (a) shows a DET curve that plots FRR against FAR in the 
normal deviate scale. In (b) a ROC curve plots FRR against 
FAR in the linear scale, while in (c) a ROC curve plots GAR 
against FAR in a semi-logarithmic scale. 14 

1.9 Biometric systems are being deployed in various applica­
tions, (a) The Schiphol Privium program at the Amsterdam 
airport uses iris scans to validate the identity of a traveler 
(www.airport-technology.com). (b) The Ben Gurion 
airport in Tel Aviv uses Express Card entry kiosks fitted 
with hand geometry systems for security and immigration 
(www. a i r p o r t n e t . org), (c) A few Kroger stores in Texas 
use fingerprint verification systems that enable customers to 
render payment at the check-out counter. The fingerprint 
information of a customer is linked with her credit or debit 
card (www. detnews. com), (d) Finger geometry information 
is used in Disney World, Orlando to ensure that a single sea­
son pass is not fraudulently used by multiple visitors, (e) A 
cell-phone that validates authorized users using fingerprints 
and allows them access to the phone's special functionali­
ties such as mobile-banking (www.mobileburn.com). (f) 
The US-VISIT program currently employs two-print infor­
mation to validate the travel documents of visitors to the 
United States (www. dhs. gov). 20 
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1.10 Intra-class variation associated with an individual's face im­
age. Due to change in pose, an appearance-based face recog­
nition system is unlikely to match these three images suc­
cessfully, although they belong to the same individual (Hsu, 
2002). 26 

1.11 Non-universality of fingerprints. The four impressions of a 
user's fingerprint shown here cannot be enrolled by most fin­
gerprint systems due to the poor image quality of the ridges. 
Consequently, alternate methods must be adopted in order to 
include this user in the biometric authentication system. 28 

1.12 A biometric system is vulnerable to a variety of attacks (adapted 
from Ratha et al., 2001). For functional integrity, there should 
be protocols in place that deflect, detect and rectify the con­
sequences of these attacks. 29 

2.1 Two general approaches to solving a pattern recognition prob­
lem. Each cell in this diagram indicates the application of 
a particular classifier, C ,̂ to a specific pattern representation 
(i.e., feature set), Fj. The approach in (a) is to determine the 
best set of features and the best classifier, while in (b) the 
goal is to determine the best set of classifiers and an optimal 
fusion algorithm to integrate these classifiers. The feature 
sets Fi, F2 , . . . , Fjsf do not have to be mutually exclusive. 39 

2.2 A multimodal interface to acquire face, fingerprint and hand 
geometry images of a person. A well designed interface can 
enhance user convenience and ensure that multiple sources of 
evidence are reliably acquired. In this example, integrating 
the hand and fingerprint input devices into a single unit may 
be beneficial as it would reduce the burden on the individual 
to exphcitly interact with two spatially separated devices. 43 

2.3 Multimodal biometric systems utilize different body traits to 
establish identity. In principle, a large number of traits can 
be used to improve the identification accuracy. In practice, 
factors such as cost of deployment, finite training sample 
size, throughput time and user training will limit the number 
of traits used in a particular application. 44 

2.4 The various sources of information in a multibiometric sys­
tem: multi-sensor, multi-algorithm, multi-instance, multi-
sample and multimodal. In the first four scenarios, a single 
biometric trait provides multiple sources of evidence. In the 
fifth scenario, different biometric traits are used to obtain evidence. 45 
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2.5 The multi-algorithm fingerprint matcher designed by Ross 
et al., 2003. The system utilizes both minutiae and texture 
information to represent and match two fingerprint images 
(query and template). The minutiae matching module pro­
vides the transformation parameters necessary to align the 
query image with the template before extracting the texture 
information from the former. The texture information is rep­
resented using ridge feature maps. 47 

2.6 The scenario envisioned by Beattie et al., 2005 in which 
biometric sensors are installed at various locations within 
a building that is partitioned into various zones. The au­
thentication decision rendered at a particular location for a 
specific user, is a function of the decisions generated at other 
locations previously visited by the same user. Thus, there 
is an integration of evidence across space and time. More­
over, the fusion rule employed at a particular site can vary 
depending upon the security level of the associated zone. For 
example, in the above illustration, a user entering site B has 
to be verified using two biometric sensors whose decisions 
may be combined using the AND decision rule. 50 

2.7 In the cascade (or serial) mode of operation, evidence is in­
crementally processed in order to establish identity. This 
scheme is also known as sequential pattern recognition. It 
enhances user convenience while reducing the average pro­
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acquire all the biometric traits. 53 

2.8 In the parallel mode of operation, the evidence acquired from 
multiple sources is simultaneously processed in order to es­
tablish identity. Note that the evidence pertaining to the mul­
tiple sources may be acquired in a sequential fashion. 54 

2.9 The cascade mode of processing permits database indexing 
where one modality can be used to retrieve a subset of identi­
ties while the second modality determines the best match. In 
this example, the face system is employed to recover the top 
n matches while the fingerprint system decides the identity 
of the user based on the n retrieved matches. 54 
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at the match score level or the decision level. More recently 
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Preface 

The pronounced need for reliably determining or verifying the identity of 
a person has spurred active research in the field of biometric authentication. 
Biometric authentication, or simply biometrics, is the science of establishing 
an identity based on the physical or behavioral attributes of an individual, in­
cluding fingerprint, face, voice, gait, iris, signature, hand geometry and ear. 
It is becoming increasingly apparent that a single biometric trait (used in a 
unibiometric system) is not sufficient to meet a number of system requirements 
- including matching performance - imposed by several large-scale authen­
tication applications. Multibiometric systems seek to alleviate some of the 
drawbacks encountered by unibiometric systems by consolidating the evidence 
presented by multiple biometric sources. These systems can significantly im­
prove the recognition performance of a biometric system besides improving 
population coverage, deterring spoof attacks, and reducing the failure-to-enroll 
rate. Although the storage requirements, processing time and the computational 
demands of a multibiometric system can be significantly higher (than a unibio­
metric system), the above mentioned advantages present a compelling case for 
deploying multibiometric systems in large-scale authentication systems (e.g., 
border crossing) and systems requiring very high accuracies (e.g., access to a 
secure mihtary base). 

The field of multibiometrics has made rapid advances over the past few years. 
These developments have been fueled in part by recent government mandates 
stipulating the use of biometrics for delivering crucial societal functions. The 
US-VISIT program (United States Visitor and Immigration Status Indicator 
Technology) is a border security system that validates the travel documents of 
foreign visitors to the United States. Currently, fingerprint images of left- and 
right-index fingers of a person are being used to associate a visa with an individ­
ual entering the United States; in the future, all ten fingers may be used thereby 
necessitating the development of efficient data capture as well as fusion algo­
rithms. The International Civil Aviation Organization (ICAO) has unanimously 
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recommended that its member States use Machine Readable Travel Documents 
(MRTDs) that incorporate at least the face biometric (some combination of face, 
fingerprint and iris can also be used) for purposes of establishing the identity of 
a passport holder. Thus, research in multibiometrics has the potential to impact 
several large-scale civilian and commercial applications. 

From an academic perspective, research in multibiometrics has several differ­
ent facets: identifying the sources of multiple biometric information; determin­
ing the type of information to be fused; designing optimal fusion methodologies; 
evaluating and comparing different fusion methodologies; and building robust 
multimodal interfaces that facilitate the efficient acquisition of multibiometric 
data. One of the goals of this book is to lend structure to the amorphous body 
of research work that has been conducted in the field of multibiometrics. To 
this end, we have attempted to assemble a framework that can be effectively 
used to understand the issues and progress being made in multibiometrics while 
identifying the challenges and potential research directions in this field. 

The book is organized as follows. Chapter 2 introduces the notion of in­
formation fusion in the context of biometrics and enumerates the advantages 
imparted by multibiometric systems. The various sources of biometric infor­
mation that can be integrated in a multibiometric framework, such as multiple 
sensors, multiple algorithms and multiple samples, are then discussed with 
examples from the literature. This chapter also examines different types of ac­
quisition and processing schemes that are relevant to multibiometric systems. 
Finally, the types of information (also known as the levels of fusion) that can 
be accommodated in a fusion architecture are briefly visited. In Chapter 3, 
the sensor-level, feature-level, rank-level and decision-level fusion schemes are 
explored in detail along with examples highlighting the pros and cons of each 
fusion level. Integration strategies for each of these fusion levels are presented, 
both from the multibiometric as well as the multiple classifier system literature. 
The chapter concludes by categorizing some of the representative publications 
in multibiometrics on the basis of the sources of biometric information used 
and the level of fusion adopted. Chapter 4 is entirely dedicated to score-level 
fusion, since fusion at this level has been elaborately studied in the literature. 
The integration strategies pertinent to this level are presented under three dis­
tinct categories: (i) density-based score fusion, (ii) transformation-based score 
fusion, and (iii) classifier-based score fusion. This chapter discusses examples 
embodying each of these categories; a mathematical framework is adopted in 
order to assist the reader in understanding the differences between the three 
categories. The chapter concludes by indicating how the performance of a 
score fusion system can be further enhanced by utilizing user-specific parame­
ters. In Chapter 5, the possibility of incorporating ancillary information, such 
as the quality of the biometric data and the soft biometrics of individuals, in 
a biometric fusion framework is discussed. Soft biometric traits include char-
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acteristics such as gender, height, weight, eye color, etc. that provide added 
information about an individual, but lack the distinctiveness and permanence 
to sufficiently differentiate between multiple individuals. The chapter presents 
an information fusion framework to include soft biometric traits in the authen­
tication process. The final contribution of this book is an Appendix that lists 
some of the databases that have been used for evaluating the performance of 
various multibiometric algorithms. 

We are grateful to a number of individuals who lent their generous support to 
this project. Julian Fierrez-Aguilar, Universidad Autonoma de Madrid, Patrick 
Flynn, University of Notre Dame, Lawrence Homak, West Virginia Univer­
sity, Richard Lazarick, Computer Sciences Corporation, Norman Poh, IDIAP, 
Salil Prabhakar, Digital Persona, Inc., Choonwoo Ryu, INHA University, Mar­
ios Savvides, Carnegie Mellon University, Yunhong Wang, Beihang University 
and James Wayman, San Jose State University reviewed and provided valu­
able comments on preliminary drafts of this book. We had a number of use­
ful discussions with Josef Bigun, Halmstad University, Sarat Dass, Michigan 
State University, Josef Kittler, University of Surrey, Sharath Pankanti, IBM T. J. 
Watson Research Center and David Zhang, Hong Kong Polytechnic University. 
Arun George, West Virginia University and Yi Chen, Michigan State Univer­
sity designed several of the illustrations in this book. Thanks to Samir Shah 
and Rohan Nadgir, West Virginia University and Umut Uludag, Michigan State 
University for proofreading the manuscript. We would also like to thank the 
Center for Identification Technology Research (CITeR), West Virginia Univer­
sity, the National Science Foundation (NSF) and the Department of Homeland 
Security (DHS) for supporting our research in multibiometrics. 

This book has been written for researchers, engineers, students and biometric 
system integrators who are keen on exploring the fundamentals of multibiomet­
rics. It can be used as a reference guide for a graduate course in biometrics. 
Some of the concepts presented in this book are applicable to the general do­
main of information fusion and, hence, students of this field will also benefit 
from the book. We hope that the concepts and ideas presented in the following 
pages will stimulate the reader's curiosity and help develop an appreciation for 
this rapidly evolving field, called Multibiometrics. 

ARUN ROSS, MORGANTOW^N, W V 

KARTHIK NANDAKUMAR, EAST LANSING, MI 

ANIL K . JAIN, EAST LANSING, MI 



Chapter 1 

BIOMETRICS: WHEN IDENTITY MATTERS 

1.1 Introduction 

A reliable identity management system is a critical component in several 
applications that render services to only legitimately enrolled users. Examples 
of such applications include sharing networked computer resources, granting 
access to nuclear facilities, performing remote financial transactions or board­
ing a commercial flight. The proliferation of web-based services (e.g., online 
banking) and the deployment of decentralized customer service centers (e.g., 
credit cards) have further enhanced the need for reliable identity management 
systems. 

The overarching task in an identity management system is the determination 
(or verification) of an individual's identity (or claimed identity). ̂  Such an action 
may be necessary for a variety of reasons but the primary intention, in most 
applications, is to prevent impostors from accessing protected resources. Tra­
ditional methods of establishing a person's identity include knowledge-based 
(e.g., passwords) and token-based (e.g., ID cards) mechanisms, but these sur­
rogate representations of the identity can easily be lost, shared, manipulated or 
stolen thereby undermining the intended security. Biometrics^ offers a natu­
ral and reliable solution to certain aspects of identity management by utilizing 
fully automated or semi-automated schemes to recognize individuals based on 
their inherent physical and/or behavioral characteristics (Jain et al., 2004c). By 
using biometrics it is possible to establish an identity based on who you are, 
rather than by what you possess, such as an ID card, or what you remember, 
such as a password (Figure 1.1). In some applications, biometrics may be used 
to supplement ID cards and passwords thereby imparting an additional level 
of security. Such an arrangement is often called a dual-factor authentication 
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scheme. Thus, biometrics does not have to replace tokens and passwords in all 
applications. 

' ^ I l ^ ^ " ' : o r : r n A T v ; ; ^ i i : ; . i - N - i 
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(a) (b) 

Figure 1.1. Authentication schemes, (a) Traditional schemes use ID cards, passwords and keys 
to validate individuals and ensure that system resources are accessed by a legitimately enrolled 
individual, (b) With the advent of biometrics, it is now possible to establish an identity based on 
"who you are" rather than by "what you possess" or "what you remember". 

The effectiveness of an authenticator (biometric or non-biometric) is based 
on its robustness to various types of malicious attacks as well as its relevance 
to a particular appHcation. O'Gorman, 2003 lists a number of attacks that can 
be launched against authentication systems based on passwords and tokens: 
(a) client attack (e.g., guessing passwords, stealing tokens); (b) host attack 
(e.g., accessing plain text file containing passwords); (c) eavesdropping (e.g., 
"shoulder surfing" for passwords); (d) repudiation (e.g., claiming that token 
was misplaced); (e) trojan horse attack (e.g., installation of bogus log-in screen 
to steal passwords); and (f) denial of service (e.g., disabling the system by 
deliberately supplying an incorrect password several times). While some of 
these attacks can be deflected by designing appropriate defense mechanisms, it 
is not possible to handle all the problems associated with the use of passwords 
and tokens. 

Biometrics offers certain advantages such as negative recognition and non-
repudiation that cannot be provided by tokens and passwords (Prabhakar et al., 
2003). Negative recognition is the process by which a system determines that a 
certain individual is indeed enrolled in the system although the individual might 
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deny it. This is especially critical in applications such as welfare disbursement 
where an impostor may attempt to claim multiple benefits (i.e., double dipping) 
under different names. Non-repudiation is a way to guarantee that an individual 
who accesses a certain facility cannot later deny using it (e.g., a person accesses 
a certain computer resource and later claims that an impostor must have used 
it under falsified credentials). 

Biometric systems use a variety of physical or behavioral characteristics (Fig­
ure 1.2), including fingerprint, face, hand/finger geometry, iris, retina, signature, 
gait, palmprint, voice pattern, ear, hand vein, odor or the DNA information of 
an individual to establish identity (Jain et al., 1999a; Wayman et al., 2005). In 
the biometric literature, these characteristics are referred to as traits, indicators, 
identifiers or modalities. While biometric systems have their own limitations 
(O'Gorman, 2002) they have an edge over traditional security methods in that 
they cannot be easily stolen or shared. Besides bolstering security, biometric 
systems also enhance user convenience by alleviating the need to design and 
remember passwords. 

The use of biological traits to confirm the identity of an individual is certainly 
not a new concept. In the late 19th century, Alphonse Bertillon, a French law 
enforcement officer, advocated a personal identification system that associated 
a set of anthropometric measurements with an individual (Moenssens, 1971). 
The Bertillonage system entailed the precise measurement of certain bony parts 
of the body (including the ear); a morphological description of the appearance 
and shape of the body; and a hsting of peculiar marks such as moles, scars and 
tattoos on the surface of the body. These measurements were then recorded on a 
card and filed in a central repository that was partitioned into several categories 
based on the acquired measurements. This indexing ability permitted the quick 
retrieval of an individual's card when a repeat offender was booked by the police. 
But the system was cumbersome to administer uniformly (making it prone to 
error) and did not guarantee uniqueness across individuals (Figure 1.3). It was, 
therefore, abandoned in the wake of rapid developments in forensic fingerprint 
examination thanks to the pioneering works of Henry Faulds, William Herschel 
and Sir Francis Galton (Faulds, 1880; Herschel, 1880; Galton, 1888). Although 
the Bertillonage system cannot be considered as a biometric system because of 
its lack of automation, it has nevertheless laid the foundation for modern day 
biometrics. 

The advent of digital signal processing saw the design of automated systems 
in the 1960s and 1970s that were capable of processing fingerprint (Traur-
ing, 1963; Grasselh, 1969; Shelman, 1967), voice (Kersta, 1962; Pruzansky, 
1963; Luck, 1969), hand (Ernst, 1971; Miller, 1971; Jacoby et al., 1972) and 
face (Kanade, 1973) data. The availability of faster computers and improved 
sensing technology (Figure 1.4) coupled with significant advances in statisti­
cal pattern recognition and computer vision has resulted in the development 
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Signature 

Keystroke Pattern 

Voice 

Figure L2. Examples of biometric traits that can be used for authenticating an individual. 
Physical traits include fingerprint, iris, face and hand geometry while behavioral traits include 
signature, keystroke dynamics and gait. 

of sophisticated schemes to process and match the biometric data of several 
modalities including iris, retina, gait and signature. Furthermore, advances in 
3D modeling and graphics in recent years have paved the way for processing 
3D biometric data such as range images of the hand, face and ear. 
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Figure 1.3. The Bertillonage system, so named after its inventor Alphonse Bertillon, relied 
on the precise measurement of various attributes of the body for identifying recidivists. These 
measurements included the height of the individual, the length of the arm, geometry of the 
head and the length of the foot. The process was tedious to administer and did not guarantee 
uniqueness across individuals. 

1.2 Operation of a biometric system 
How does a biometric system operate? A biometric system is essentially 

a pattern recognition system that acquires biometric data from an individual, 
extracts a salient feature set from the data, compares this feature set against the 
feature set(s) stored in the database, and executes an action based on the result 
of the comparison. Therefore, a generic biometric system can be viewed as 
having four main modules: a sensor module; a quality assessment and feature 
extraction module; a matching module; and a database module. Each of these 
modules is described below. 

1 Sensor module: A suitable biometric reader or scanner is required to ac­
quire the raw biometric data of an individual. To obtain fingerprint images, 
for example, an optical fingerprint sensor may be used to image the friction 
ridge structure of the fingertip. The sensor module defines the human ma­
chine interface and is, therefore, pivotal to the performance of the biometric 
system. A poorly designed interface can result in a high failure-to-acquire 
rate (see Section 1.4) and, consequently, low user acceptability. Since most 
biometric modalities are acquired as images (exceptions include voice which 
is audio-based and odor which is chemical-based), the quality of the raw 
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Figure 1.4. A variety of fingerprint sensors with different specifications (e.g., sensing tech­
nology, image size, image resolution, image quality, etc.) are now available. These rather 
compact sensors may be embedded in computer peripherals and other devices to facilitate user 
authentication. 

data is also impacted by the characteristics of the camera technology that is 
used. 

2 Quality assessment and feature extraction module: The quality of the 
biometric data acquired by the sensor is first assessed in order to determine 
its suitability for further processing. Typically, the acquired data is sub­
jected to a signal enhancement algorithm in order to improve its quality. 
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However, in some cases, the quality of the data may be so poor that the 
user is asked to present the biometric data again. The biometric data is then 
processed and a set of saHent discriminatory features extracted to represent 
the underlying trait. For example, the position and orientation of minutia 
points (local ridge and valley anomalies) in a fingerprint image are extracted 
by the feature extraction module in a fingerprint-based biometric system. 
During enrollment, this feature set is stored in the database and is commonly 
referred to as a template. 

3 Matching and decision-making module: The extracted features are com­
pared against the stored templates to generate match scores. In a fingerprint-
based biometric system, the number of matching minutiae between the input 
and the template feature sets is determined and a match score reported. The 
match score may be moderated by the quality of the presented biometric 
data. The matcher module also encapsulates a decision making module, 
in which the match scores are used to either validate a claimed identity or 
provide a ranking of the enrolled identities in order to identify an individual. 

4 System database module: The database acts as the repository of biomet­
ric information. During the enrollment process, the feature set extracted 
from the raw biometric sample (i.e., the template) is stored in the database 
(possibly) along with some biographic information (such as name, Personal 
Identification Number (PIN), address, etc.) characterizing the user. The 
data capture during the enrollment process may or may not be supervised 
by a human depending on the application. For example, a user attempt­
ing to create a new computer account in her biometric-enabled workstation 
may proceed to enroll her biometrics without any supervision; a person 
desiring to use a biometric-enabled ATM, on the other hand, will have to 
enroll her biometrics in the presence of a bank officer after presenting her 
non-biometric credentials. 

The template of a user can be extracted from a single biometric sample, or 
generated by processing multiple samples. Thus, the minutiae template of a 
finger may be extracted after mosaicing multiple samples of the same finger. 
Some systems store multiple templates in order to account for the intra-class 
variations associated with a user. Face recognition systems, for instance, may 
store multiple templates of an individual, with each template corresponding to a 
different facial pose with respect to the camera. Depending on the application, 
the template can be stored in the central database of the biometric system or be 
recorded on a token (e.g., smart card) issued to the individual. 

In the face recognition literature, the raw biometric images stored in the 
database are often referred to as gallery images while those acquired during 
authentication are known as probe images. These are synonymous with the 
terms stored images and query or input images, respectively. 
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1.3 Verification versus identification 
Depending on the application context, a biometric system may operate either 

in the verification or identification mode (see Figure 1.5). In the verification 
mode, the system validates a person's identity by comparing the captured bio­
metric data with her own biometric template(s) stored in the system database. 
In such a system, an individual who desires to be recognized claims an identity, 
usually via a PIN, a user name or a smart card, and the system conducts a one-
to-one comparison to determine whether the claim is true or not (e.g., "Does 
this biometric data belong to Bob?"). Verification is typically used for positive 
recognition, where the aim is to prevent multiple people from using the same 
identity. 

In the identification mode, the system recognizes an individual by searching 
the templates of all the users in the database for a match. Therefore, the system 
conducts a one-to-many comparison to establish an individual's identity (or 
fails if the subject is not enrolled in the system database) without the subject 
having to claim an identity (e.g., "Whose biometric data is this?"). Identification 
is a critical component in negative recognition applications where the system 
establishes whether the person is who she (implicitly or explicitly) denies to be. 
The purpose of negative recognition is to prevent a single person from using 
multiple identities. Identification may also be used in positive recognition for 
convenience (the user is not required to claim an identity). While traditional 
methods of personal recognition such as passwords, PINs, keys, and tokens 
may work for positive recognition, negative recognition can only be established 
through biometrics. 

Throughout this book, we will use the generic terms recognition or authenti­
cation where we do not wish to make a distinction between the verification and 
identification modes. 

The verification problem may be formally posed as a two-category classifi­
cation problem as follows: given an input (query) feature set XQ and a claimed 
identity / , determine if {I,XQ) belongs to u;i or a;2, where ui indicates that 
the claim is true (a "genuine" user) and a;2 indicates that the claim is false (an 
"impostor"). Typically, XQ is matched against Xj, the stored biometric tem­
plate corresponding to user / , to determine its category. The resulting decision 
rule is, 

\(jj2 Otherwise, 

where S is the function that measures the similarity between XQ and Xj, and rj 
is a predefined threshold. The value S{XQ^XI) is termed as a similarity score 
or match score between the feature vectors of the query and the stored template 
corresponding to identity / . Every claimed identity in a verification scenario is 
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Figure 1.5. Enrollment and recognition (verification and identification) stages of a biometric 
system. The quality assessment module determines if the sensed data can be effectively used 
by the feature extractor. Note that the process of quality assessment in itself may entail the 
extraction of some features from the sensed data. 

classified as uji or ijj2 based on the variables XQ, / , Xj and 7/, and the function 
S. 

The identification problem, on the other hand, may be stated as follows: given 
an input feature set XQ, determine the identity I^, k G {1,2 , . . .M, M + 1}, 
where / i , /2 , • • • IM are the M identities enrolled in the system, and / M + I 
indicates the reject case where no suitable identity can be determined for the 
input. Hence, 
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Xqe 
ifK = arg max {S{XQ , X / J } and S{XQ , X / ^ ) > 77, 

k 

Otherwise, 
(1.2) 

where X/^ is the biometric template corresponding to identity Ik, and 77 is a 
predefined threshold on the match score. 

In the above formulation, we assume that the match score, S{XQ,XJ), in­
dicates how similar XQ and Xj are. It is also possible to view the match score 
as a dissimilarity measure or a distance score. A large distance score would 
imply a poor match between XQ and X j , while a large similarity score would 
imply a good match. 

1.4 Performance of a biometric system 
Unlike password-based systems, where a perfect match between two al­

phanumeric strings is necessary in order to validate a user's identity, a bio­
metric system seldom encounters two samples of a user's biometric trait that 
result in exactly the same feature set. This is due to imperfect sensing condi­
tions (e.g., noisy fingerprint due to sensor malfunction), alterations in the user's 
biometric characteristic (e.g., respiratory ailments impacting speaker recogni­
tion), changes in ambient conditions (e.g., inconsistent illumination levels in 
face recognition) and variations in the user's interaction with the sensor (e.g., 
occluded iris or partial fingerprints). Thus, the distance between two feature 
sets originating from the same biometric trait of a user is typically non-zero (a 
distance score of zero would indicate that the feature sets are identical). Figure 
1.6 shows the minutia features extracted from three different impressions of the 
same finger. It is quite apparent that the features extracted from these finger­
print samples differ significantly from each other, and it is factitious to expect 
a perfect match between any two pairs. In fact, a perfect match might indicate 
the possibility that a replay attack (see Section 1.7) is being launched against 
the system. 

The variability observed in the biometric feature set of an individual is re­
ferred to as iVi^ra-class variation, and the variability between feature sets origi­
nating from two different individuals is known as m^^r-class variation. A useful 
feature set exhibits small intra-class variation and large inter-class variation. 

A similarity match score is known as a genuine or authentic score if it is 
a result of matching two samples of the same biometric trait of a user. It is 
known as an impostor score if it involves comparing two biometric samples 
originating from different users. An impostor score that exceeds the threshold 
77 results in a false accept (or, a false match), while a genuine score that falls 
below the threshold 77 results in a false reject (or, a false non-match). The False 
Accept Rate (FAR) (or, the False Match Rate (FMR)) of a biometric system can 
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Figure 1.6. Multiple feature sets of the same biometric trait seldom result in an exact match. 
Here, three fingerprint impressions of a person's finger (left) and the corresponding minutia 
points (right) are shown. Due to variations in finger placement, elasticity of the skin and finger 
pressure, the minutiae distributions of the three impressions are observed to be quite different. 
A perfect match between two samples of the same finger is almost impossible to achieve. 
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therefore be defined as the fraction of impostor scores exceeding the threshold rj. 
Similarly, the False Reject Rate (FRR) (or, the False Non-match Rate (FNMR))^ 
of a system may be defined as the fraction of genuine scores falling below the 
threshold 77. The Genuine Accept Rate (GAR) is the fraction of genuine scores 
exceeding the threshold rj. Therefore, 

GAR^l-FRR. (1.3) 

Regulating the value of rj changes the FRR and the FAR values, but for a given 
biometric system, it is not possible to decrease both these errors simultaneously. 
When a large number of genuine and impostor scores is available, one could 
estimate the probability density functions of the two sets of scores in order to 
analytically derive the FAR and FRR. Let p{s\genuine) and p{s\impostor) 
represent the probability density functions (or, probability distributions) of the 
score s under the genuine and impostor conditions, respectively. Then for a 
particular threshold, 77, 

/•oo 

FAR{r]) = / p{s\impostor)ds^ (1.4) 

/

rj 

p{s\genuine)ds. (1.5) 
- 0 0 

If the match score represents a distance or dissimilarity value, then FAR{r]) 
and FRR{r]) may be expressed as follows: 

p{s\impostor)ds^ (1.6) 
-CXD 

I'OO 

FRR{r]) = / p{s\genuine)ds. (1.7) 
Jr] 

Figure 1.7 illustrates the genuine and impostor distributions corresponding 
to a face biometric system. The similarity scores, in this case, are taken from the 
NIST BSSRl database (see Appendix) and originate from a matcher identified 
as Face-G. 

The FAR and FRR at various values of 77 can be summarized using a Detection 
Error Tradeoff (DET) curve (Martin et al., 1997) that plots the FRR against the 
FAR at various thresholds on a normal deviate scale and interpolates between 
these points (Figure 1.8(a)). When a linear, logarithmic or semi-logarithmic 
scale is used to plot these error rates, then the resulting graph is known as a Re­
ceiver Operating Characteristic (ROC) curve (Egan, 1975). In many instances, 
the ROC curve plots the GAR (rather than the FRR) against the FAR (see Figure 
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Figure 1.7. The genuine and impostor distributions corresponding to tlie Face-G matcher in 
the NIST BSSRl database. The threshold, 77, determines the FAR and FRR of the system. Note 
that given these two distributions, the FAR and the FRR cannot be reduced simultaneously by 
adjusting the threshold. 

1.8(b) and (c)). The primary difference between the DET and ROC curves is 
the use of the normal deviate scale in the former. 

It is important to note that the occurrence of false accepts and false rejects is 
not evenly distributed across the users of a biometric system. There are inherent 
differences in the "recognizabiUty" of different users. Doddington et al., 1998 
identify four categories of biometric users based on these inherent differences. 
Although this categorization (more popularly known as Doddington's zoo) was 
originally made in the context of speaker recognition, it is applicable to other 
biometric modalities as well. 

1 Sheep represent users whose biometric feature sets are very distinctive and 
exhibit low intra-class variations. Therefore, these users are expected to 
have low false accept and false reject errors. 

2 Goats refer to users who are prone to false rejects. The biometric feature 
sets of such users typically exhibit large intra-class variations. 

3 Lambs are users whose biometric feature set overlaps extensively with those 
of other individuals. The biometric feature sets of these users have low inter-
class variations. Thus, a randomly chosen user (from the target population) 
has a high probability of being accepted as a lamb than as a sheep. The false 
accept rate associated with these users is typically high. 
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Figure 1.8. The performance of a biometric system can be summarized using DET and ROC 
curves. In this example, the performance curves are computed using the match scores of the 
Face-G matcher from the NIST BSSRl database. The graph in (a) shows a DET curve that plots 
FRR against FAR in the normal deviate scale. In (b) a ROC curve plots ERR against FAR in the 
linear scale, while in (c) a ROC curve plots GAR against EAR in a semi-logarithmic scale. 
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4 Wolves indicate individuals who are successful in manipulating their bio-
metric trait (especially behavioral traits) in order to impersonate legitimately 
enrolled users of a system. Therefore, these users can increase the false ac­
cept rate of the system. 

Doddington et al., 1998 discuss the use of statistical testing procedures to de­
tect the presence of goats, lambs and wolves in a voice biometric system. A com­
bination of the F-test, Kruskal Wallis test and Durbin test is used to establish the 
occurrence of these categories of users in the 1998 NIST database of speech seg­
ments that was used in the evaluation of speaker recognition algorithms (h t tp : 
/ /www.nist .gov/speech/tests/spk/1998/current_plan.htm). 

Besides the two types of errors (viz., false accept and false reject) indicated 
above, a biometric system can encounter other types of failures as well. The 
Failure to Acquire (FTA) (also known as Failure to Capture (FTC)) rate denotes 
the proportion of times the biometric device fails to capture a sample when the 
biometric characteristic is presented to it. This type of error typically occurs 
when the device is not able to locate a biometric signal of sufficiently good 
quality (e.g., an extremely faint fingerprint or an occluded face image). The 
FTA rate is also impacted by sensor wear and tear. Thus, periodic sensor 
maintenance is instrumental for the efficient functioning of a biometric system. 
The Failure to Enroll (FTE) rate denotes the proportion of users that cannot be 
successfully enrolled in a biometric system. User training may be necessary to 
ensure that an individual interacts with a biometric system appropriately in order 
to facilitate the acquisition of good quality biometric data. This necessitates the 
design of robust and efficient user interfaces that can assist an individual both 
during enrollment and recognition. 

There is a tradeoff between the FTE rate and the perceived system accuracy 
as measured by FAR/FRR. FTE errors typically occur when the system rejects 
poor quality inputs during enrollment; consequently, if the threshold on qual­
ity is high, the system database contains only good quality templates and the 
perceived system accuracy improves. Because of the interdependence among 
the failure rates and error rates, all these rates (i.e., FTE, FTC, FAR, FRR) con­
stitute important performance specifications of a biometric system, and should 
be reported during system evaluation along with the target population using the 
system. 

The performance of a biometric system may also be summarized using other 
single-valued measures such as the Equal Error Rate (EER) and the d-prime 
value. The EER refers to that point in a DET curve where the FAR equals 
the FRR; a lower EER value, therefore, indicates better performance. The d-
prime value (d') measures the separation between the means of the genuine and 
impostor probability distributions in standard deviation units and is defined as. 
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if V^\ f^genuine f^impostor 
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where the /i's and a's are the means and standard deviations, respectively, of 
the genuine and impostor distributions. A higher d-prime value indicates better 
performance. If the genuine and impostor distributions indeed follow a normal 
(Gaussian) distribution with equal variance (a very unlikely situation in the 
practical biometric domain), then d^ reduces to the normal deviate value (Swets 
et al., 1961). Poh and Bengio, 2005b introduce another single-valued measure 
known as F-Ratio which is defined as, 

P . f^genuine ~ f^impostor 

^genuine i (^impostor 

If the genuine and impostor distributions are Gaussian, then the EER and F-ratio 
are related according to the following expression: 

x̂ ,̂̂  1 1 ^ /F-ratio EER = erf 
2 2 V ^ 

where 

2 r 
erf(x) - - ^ / 

V ̂  Jo 

.-t^ e~^ dt. 

In the case of identification, the input feature set is compared against all 
templates residing in the database in order to determine the top match (i.e, the 
best match). The top match can be determined by examining the match scores 
pertaining to all the comparisons and reporting the identity of the template 
corresponding to the largest similarity score. The identification rate indicates 
the proportion of times a previously enrolled individual is successfully mapped 
to the correct identity in the system. Here, we assume that the question being 
asked is, "Does the top match correspond to the correct identity?" An alternate 
question could be, "Does any one of the top k matches correspond to the correct 
identity?" (see Moon and Phillips, 2001). The rank-A; identification rate, Rk, 
indicates the proportion of times the correct identity occurs in the top k matches 
as determined by the match score. Rank-/c performance can be summarized 
using the Cumulative Match Characteristic (CMC) curve (Moon and Phillips, 
2001) that plots Rk against fc, for /c = 1, 2 , . . . M with M being the number of 
enrolled users. The relationship between CMC and DET/ROC curves has been 
discussed by Grother and Phillips, 2004 and Bolle et al., 2005. 

The biometric of choice for a particular application is primarily dictated by 
the error rates and failure rates discussed above. Other factors such as the 
cost of the system, throughput rate, user acceptance, ease of use, robustness 
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Table 1.1. Authentication solutions employing biometrics can be used in a variety of applications 
which depend on reliable user authentication mechanisms. 

FORENSICS 
Corpse identification 

Criminal investigation 

Parenthood 
determination 

Missing children 

GOVERNMENT 
National ID card 

Driver's license; voter 
registration 

Welfare disbursement 

Border crossing 

COMMERCIAL 
ATM 

Access control; 
computer login 
Mobile phone 

E-commerce; Internet; 
banking; smart card 

of the sensor, etc. also determine the suitability of a biometric system for an 
application. 

1.5 Applications of biometrics 
Establishing the identity of a person with high confidence is becoming critical 

in a number of applications in our vastly interconnected society. Questions like 
"Is she really who she claims to be?", "Is this person authorized to use this facil­
ity?" or "Is he in the watchlist posted by the government?" are routinely being 
posed in a variety of scenarios ranging from issuing a driver's licence to gaining 
entry into a country. The need for reliable user authentication techniques has 
increased in the wake of heightened concerns about security, and rapid advance­
ments in networking, communication and mobility. Thus, biometrics is being 
increasingly incorporated in several different applications. These applications 
can be categorized into three main groups (see Table 1.1): 

1 Commercial applications such as computer network login, electronic data 
security, e-commerce, Internet access, ATM or credit card use, physical 
access control, mobile phone, PDA, medical records management, distance 
learning, etc. 

2 Government applications such as national ID card, managing inmates in a 
correctional facility, driver's license, social security, welfare-disbursement, 
border control, passport control, etc. 

3 Forensic applications such as corpse identification, criminal investigation, 
parenthood determination, etc. 

Examples of a few applications where biometrics is being used for authenti­
cating individuals are presented below (also see Figure 1.9). 
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1 The Schiphol Privium scheme at Amsterdam's Schipol airport employs iris 
scan smart cards to speed up the immigration procedure. Passengers who 
are voluntarily enrolled in this scheme insert their smart card at the gate and 
peek into a camera; the camera acquires the eye image of the traveler and 
processes it to locate the iris, and computes the Iriscode (Daugman, 1999); 
the computed Iriscode is compared with the data residing in the smart card 
to complete user verification. A similar scheme is also being used to verify 
the identity of Schiphol airport employees working in high-security areas. 
This is a good example of a biometric system that is being used to enhance 
user convenience while improving security. 

2 The Ben Gurion International Airport at Tel Aviv employs automated hand 
geometry-based identification kiosks to enable Israeli citizens and frequent 
international travelers to rapidly go through the passport inspection process. 
Currently more than 160,000 Israeli citizens are enrolled in this program. 
The kiosk-based system uses the credit card of the traveler to begin the veri­
fication process. The hand geometry information is then used for validating 
the traveler's identity and ensuring that the individual is not a security haz­
ard. The automated inspection process takes less than 20 seconds and has 
considerably reduced the waiting time for passengers. 

3 Some financial institutions in Japan have installed palm-vein authentication 
systems in their ATMs to help validate the identity of a customer intending to 
conduct a transaction. A contactless sensor is used to image the vein pattern 
pertaining to the customer's palm using a near infrared lighting source. 
Thus, a person does not have to directly place the palm on the device. 

4 Kroger, a US supermarket chain, has deployed fingerprint scanners in some 
of its stores in order to help customers cash payroll checks or render payment 
after a purchase. Interested customers can enroll their index finger along 
with details of their credit/debit card (or electronic check); the customer's 
driver's licence is used to validate the identity during the time of enrollment. 

5 Season pass holders accessing theme park facilities at Disney World, Or­
lando, have their finger geometry information stored in a central repository. 
When a visitor presents her pass to access a facility in the theme park, the 
biometric information presented at the entrance is compared with the data 
in the repository. This ensures that multiple individuals do not use the same 
season pass fraudulently. The personal details of the visitor are not asso­
ciated with the finger geometry data in the repository thereby imparting 
security without compromising privacy. 

6 The United States Visitor and Immigration Status Indicator Technology (US-
VISIT) is a border security system that has been deployed at 115 airports. 
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15 seaports and in the secondary inspection areas of the 50 busiest land 
ports of entry. Foreign visitors entering the United States have their left 
and right index fingers scanned by a fingerprint sensor. The biometric data 
acquired is used to validate an individual's travel documents at the port of 
entry. A biometric exit procedure has also been adopted in some airports 
and seaports to facilitate a visitor's future trips to the country. Although 
two-print information is currently being used, the system might employ all 
ten fingers of a person in the future; this would ensure that the US-VISIT 
fingerprint database is compatible with the ten-print database maintained 
by the FBI in its Integrated Automated Fingerprint Identification System 
(lAFIS - see h t tp : / /www.fbi .gov/hq/c j i sd / iaf i s .h tm) . 

1,6 Biometric characteristics 
A number of biometric characteristics are being used in various applications. 

Each biometric has its pros and cons and, therefore, the choice of a biometric trait 
for a particular application depends on a variety of issues besides its matching 
performance. Jain et al., 1999a have identified seven factors that determine the 
suitability of a physical or a behavioral trait to be used in a biometric application. 

1 Universality: Every individual accessing the application should possess the 
trait. 

2 Uniqueness: The given trait should be sufficiently different across individ­
uals comprising the population. 

3 Permanence: The biometric trait of an individual should be sufficiently 
invariant over a period of time with respect to the matching algorithm. A 
trait that changes significantly over time is not a useful biometric. 

4 Measurability: It should be possible to acquire and digitize the biomet­
ric trait using suitable devices that do not cause undue inconvenience to 
the individual. Furthermore, the acquired raw data should be amenable to 
processing in order to extract representative feature sets. 

5 Performance: The recognition accuracy and the resources required to 
achieve that accuracy should meet the constraints imposed by the appli­
cation. 

6 Acceptability: Individuals in the target population that will utilize the ap­
plication should be willing to present their biometric trait to the system. 

7 Circumvention: This refers to the ease with which the trait of an individual 
can be imitated using artifacts (e.g., fake fingers), in the case of physical 
traits, and mimicry, in the case of behavioral traits. 



20 HANDBOOK OF MULTIBIOMETRICS 

piiilii&v™.- ;;:5:ii i i 

e^lf l^^^-J; 

^%- WsJ ^^^ '̂''̂ •'*i ti:-'^^ •?fe 

(a) (b) 

(c) (d) 

m̂-

Ce) Cf) 

Figure 1.9. Biometric systems are being deployed in various applications, (a) The Schiphol 
Privium program at the Amsterdam airport uses iris scans to validate the identity of a traveler 
(www. a i rpor t - technology. com), (b) The Ben Gurion airport in Tel Aviv uses Express Card 
entry kiosks fitted with hand geometry systems for security and immigration (www. a i r p o r t n e t . 
org), (c) A few Kroger stores in Texas use fingerprint verification systems that enable customers 
to render payment at the check-out counter. The fingerprint information of a customer is linked 
with her credit or debit card (www.detnews. com), (d) Finger geometry information is used in 
Disney World, Orlando to ensure that a single season pass is not fraudulently used by multiple 
visitors, (e) A cell-phone that validates authorized users using fingerprints and allows them access 
to the phone's special functionalities such as mobile-banking (www.mobileburn. com), (f) The 
US-VISIT program currently employs two-print information to validate the travel documents of 
visitors to the United States (www. dhs. gov). 
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No single biometric is expected to effectively meet all the requirements (e.g., 
accuracy, practicality, cost) imposed by all applications (e.g.. Digital Rights 
Management (DRM), access control, welfare distribution). In other words, 
no biometric is ideal but a number of them are admissible. The relevance 
of a specific biometric to an application is established depending upon the 
nature and requirements of the application, and the properties of the biometric 
characteristic. A brief introduction to some of the commonly used biometric 
characteristics is given below: 

1 Face: Face recognition is a non-intrusive method, and facial attributes are 
probably the most common biometric features used by humans to recog­
nize one another. The applications of facial recognition range from a static, 
controlled "mug-shot" authentication to a dynamic, uncontrolled face iden­
tification in a cluttered background. The most popular approaches to face 
recognition (Li and Jain, 2005) are based on either (i) the location and shape 
of facial attributes, such as the eyes, eyebrows, nose, lips, and chin and their 
spatial relationships, or (ii) the overall (global) analysis of the face image 
that represents a face as a weighted combination of a number of canonical 
faces. While the authentication performance of the face recognition sys­
tems that are commercially available is reasonable (Phillips et al., 2003), 
they impose a number of restrictions on how the facial images are obtained, 
often requiring a fixed and simple background with controlled illumination. 
These systems also have difficulty in matching face images captured from 
two different views, under different illumination conditions, and at different 
times. It is questionable whether the face itself, without any contextual in­
formation, is a sufficient basis for recognizing a person from a large number 
of identities with an extremely high level of confidence. In order that a facial 
recognition system works well in practice, it should automatically (i) detect 
whether a face is present in the acquired image; (ii) locate the face if there 
is one; and (iii) recognize the face from a general viewpoint (i.e., from any 
pose). 

2 Fingerprint: Humans have used fingerprints for personal identification for 
many decades. The matching (i.e., identification) accuracy using finger­
prints has been shown to be very high (Wilson et al., 2004; Maio et al., 
2004). A fingerprint is the pattern of ridges and valleys on the surface of 
a fingertip whose formation is determined during the first seven months of 
fetal development. It has been empirically determined that the fingerprints 
of identical twins are different and so are the prints on each finger of the 
same person (Maltoni et al., 2003). Today, most fingerprint scanners cost 
less than US $50 when ordered in large quantities and the marginal cost of 
embedding a fingerprint-based biometric in a system (e.g., laptop computer) 
has become affordable in a large number of applications. The accuracy of 
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the currently available fingerprint recognition systems is adequate for au­
thentication systems in several applications, particularly forensics. Multiple 
fingerprints of a person (e.g., ten-prints used in lAFIS) provide additional 
information to allow for large-scale identification involving millions of iden­
tities. One problem with large-scale fingerprint recognition systems is that 
they require a huge amount of computational resources, especially when 
operating in the identification mode. Finally, fingerprints of a small fraction 
of the population may be unsuitable for automatic identification because of 
genetic factors, aging, environmental or occupational reasons (e.g., manual 
workers may have a large number of cuts and bruises on their fingerprints 
that keep changing). 

3 Hand geometry: Hand geometry recognition systems are based on a num­
ber of measurements taken from the human hand, including its shape, size 
of palm, and the lengths and widths of the fingers (Zunkel, 1999). Com­
mercial hand geometry-based authentication systems have been installed 
in hundreds of locations around the world. The technique is very simple, 
relatively easy to use, and inexpensive. Environmental factors such as dry 
weather or individual anomalies such as dry skin do not appear to adversely 
affect the authentication accuracy of hand geometry-based systems. How­
ever, the geometry of the hand is not known to be very distinctive and hand 
geometry-based recognition systems cannot be scaled up for systems requir­
ing identification of an individual from a large population. Furthermore, 
hand geometry information may not be invariant during the growth period 
of children. In addition, an individual's jewelry (e.g., rings) or limitations in 
dexterity (e.g., from arthritis), may pose challenges in extracting the correct 
hand geometry information. The physical size of a hand geometry-based 
system is large, and it cannot be embedded in certain devices like laptops. 
There are authentication systems available that are based on measurements 
of only a few fingers (typically, index and middle) instead of the entire hand. 
These devices are smaller than those used for hand geometry, but still much 
larger than those used for procuring certain other traits (e.g., fingerprint, 
face, voice). 

4 Palmprint: The palms of the human hands contain pattern of ridges and 
valleys much like the fingerprints. The area of the palm is much larger than 
the area of a finger and, as a result, palmprints are expected to be even more 
distinctive than the fingerprints (Zhang et al., 2003; Kumar et al., 2003). 
Since palmprint scanners need to capture a large area, they are bulkier and 
more expensive than the fingerprint sensors. Human palms also contain 
additional distinctive features such as principal lines and wrinkles that can 
be captured even with a lower resolution scanner, which would be cheaper ( 
Duta et al., 2002). Finally, when using a high-resolution palmprint scanner. 
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all the features of the hand such as geometry, ridge and valley features (e.g., 
minutiae and singular points such as deltas), principal lines, and wrinkles 
may be combined to build a highly accurate biometric system. 

5 Iris: The iris is the annular region of the eye bounded by the pupil and 
the sclera (white of the eye) on either side. The visual texture of the iris is 
formed during fetal development and stabilizes during the first two years of 
life (the pigmentation, however, continues changing over an extended period 
of time Wasserman, 1974). The complex iris texture carries very distinctive 
information useful for personal recognition (Daugman, 2004). The accuracy 
and speed of currently deployed iris-based recognition systems is promising 
and support the feasibility of large-scale identification systems based on iris 
information. Each iris is distinctive and even the irises of identical twins are 
different. It is possible to detect contact lenses printed with a fake iris (see 
Daugman, 1999). The hippus movement of the eye may also be used as a 
measure of liveness for this biometric. Although early iris-based recognition 
systems required considerable user participation and were expensive, the 
newer systems have become more user-friendly and cost-effective (Negin 
et al., 2000; Fancourt et al., 2005). While iris systems have a very low False 
Accept Rate (FAR) compared to other biometric traits, the False Reject Rate 
(FRR) of these systems can be rather high (International Biometric Group, 
2005). 

6 Keystroke: It is hypothesized that each person types on a keyboard in a 
characteristic way. This biometric is not expected to be unique to each indi­
vidual but it may be expected to offer sufficient discriminatory information 
to permit identity verification (Monrose and Rubin, 1997). Keystroke dy­
namics is a behavioral biometric; one may expect to observe large intra-class 
variations in a person's typing patterns due to changes in emotional state, 
position of the user with respect to the keyboard, type of keyboard used, etc. 
The keystrokes of a person could be monitored unobtrusively as that person 
is keying in information. This biometric permits "continuous verification" 
of an individual's identity over a session after the person logs in using a 
stronger biometric such as fingerprint or iris. 

7 Signature: The way a person signs her name is known to be a characteris­
tic of that individual (Nalwa, 1997; Lee et al., 1996). Although signatures 
require contact with the writing instrument and an effort on the part of the 
user, they have been accepted in government, legal, and commercial trans­
actions as a method of authentication. With the proliferation of PDAs and 
Tablet PCs, on-line signature may emerge as the biometric of choice in these 
devices. Signature is a behavioral biometric that changes over a period of 
time and is influenced by the physical and emotional conditions of the sig­
natories. Signatures of some people vary substantially: even successive 
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impressions of their signature are significantly different. Further, profes­
sional forgers may be able to reproduce signatures that fool the signature 
verification system (Harrison, 1981). 

8 Voice: Voice is a combination of physical and behavioral biometric char­
acteristics (Campbell, 1997). The physical features of an individual's voice 
are based on the shape and size of the appendages (e.g., vocal tracts, mouth, 
nasal cavities, and lips) that are used in the synthesis of the sound. These 
physical characteristics of human speech are invariant for an individual, but 
the behavioral aspect of the speech changes over time due to age, medical 
conditions (such as common cold), emotional state, etc. Voice is also not 
very distinctive and may not be appropriate for large-scale identification. 
A text-dependent voice recognition system is based on the utterance of a 
fixed predetermined phrase. A text-independent voice recognition system 
recognizes the speaker independent of what she speaks. A text-independent 
system is more difficult to design than a text-dependent system but offers 
more protection against fraud. A disadvantage of voice-based recognition 
is that speech features are sensitive to a number of factors such as back­
ground noise. Speaker recognition is most appropriate in telephone-based 
applications but the voice signal is typically degraded in quality by the com­
munication channel. 

9 Gait: Gait refers to the manner in which a person walks, and is one of the few 
biometric traits that can be used to recognize people at a distance. Therefore, 
this trait is very appropriate in surveillance scenarios where the identity 
of an individual can be surreptitiously established. Most gait recognition 
algorithms attempt to extract the human silhouette in order to derive the 
spatio-temporal attributes of a moving individual. Hence, the selection of a 
good model to represent the human body is pivotal to the efficient functioning 
of a gait recognition system. Some algorithms use the optic flow associated 
with a set of dynamically extracted moving points on the human body to 
describe the gait of an individual (Nixon et al., 1999). Gait-based systems 
also offer the possibility of tracking an individual over an extended period 
of time. However, the gait of an individual is affected by several factors 
including the choice of footwear, nature of clothing, affliction of the legs, 
walking surface, etc. 

1.7 Limitations of biometric systems 
While biometric systems impart several advantages to both civilian and 

government authentication applications over password- and token-based ap­
proaches, it is imperative that the vulnerabilities and limitations of these sys­
tems are considered when deploying them in real-world applications involving 
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a large number of users (viz., in the order of millions). Some of the challenges 
commonly encountered by biometric systems are listed below. 

1 Noise in sensed data: A fingerprint image with a scar, or a voice sample 
altered by cold are examples of noisy data. Noisy data may also result from 
defective or improperly maintained sensors (e.g., accumulation of dirt on a 
fingerprint sensor) or unfavorable ambient conditions (e.g., poor illumina­
tion of a user's face in a face recognition system). Noisy biometric data may 
not be successfully matched with corresponding templates in the database, 
resulting in a genuine user being incorrectly rejected." 

2 Intra-class variations: Intra-class variations in biometric systems are typ­
ically caused by an individual who is incorrectly interacting with the sensor 
(e.g., incorrect facial pose - see Figure 1.10), or due to changes in the bio­
metric characteristics of a person over a period of time (e.g., change in hand 
geometry). These variations can be handled by storing multiple templates 
for every user and updating these templates over time (Uludag et al., 2004). 
Template update is an essential ingredient of any biometric system since 
it accounts for changes in a person's biometric with the passage of time. 
The face, hand and voice modalities, in particular, can benefit from suitably 
implemented template update mechanisms. 

Intra-class variations are more prominent in behavioral traits since the vary­
ing psychological makeup of an individual might result in vastly different 
behavioral characteristics at different time instances. For example, depend­
ing on the stress level of an individual, the voice sample presented by the 
person at the time of authentication may be significantly different from the 
enrolled template. Similarly, an inebriated person's gait and signature may 
be substantially altered resulting in false rejects. 

3 Inter-class simUarities: Inter-class similarity refers to the overlap of feature 
spaces corresponding to multiple classes or individuals. In an identification 
system comprising of a large number of enrolled individuals, the inter-
class similarity between individuals will increase the false match rate of the 
system. Therefore, there is an upper bound on the number of individuals that 
can be effectively discriminated by the biometric system. Golfarelli et al., 
1997 state that the number of distinguishable patterns in two of the most 
commonly used representations of hand geometry and face are only of the 
order of 10^ and 10^, respectively (also see Table 1.2). This implicit (upper) 
bound on the number of distinguishable patterns indicates that the capacity 
of an identification system (i.e., the number of enrolled users) cannot be 
arbitrarily increased for a fixed feature set and matching algorithm. 

4 Non-universality: The biometric system may not be able to acquire mean­
ingful biometric data from a subset of users. A fingerprint biometric sys-
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Figure 1.10. Intra-class variation associated with an individual's face image. Due to change 
in pose, an appearance-based face recognition system is unlikely to match these three images 
successfully, although they belong to the same individual (Hsu, 2002). 

tern, for example, may extract incorrect minutia features from the finger­
prints of certain individuals, due to the poor quaUty of the ridges (Figure 
1.11). Thus, there is a failure to enroll (FTE) rate associated with using a 
single biometric trait. The International Biometric Group (IBG) recently 
evaluated the performance of a specific iris recognition software (Iridian 
KnoWho OEM SDK) on iris images obtained using three different iris cam­
eras (LG h-isAccess 3000, OKI Electronics IRISPASS-WG and Panasonic 
BM-ET300) from 1,224 subjects. It was reported that between 1.6% and 7% 
of the participants could not be successfully enrolled based on the camera 
that was used (International Biometric Group, 2005). 

Interoperability issues: Most biometric systems operate under the assump­
tion that the biometric data to be compared are obtained using the same sen­
sor and, hence, are restricted in their ability to match or compare biometric 
data originating from different sensors. For example, a speaker recognition 
system may find it challenging to compare voice prints originating from two 
different handset technologies such as electret and carbon-button (Martin 
et al., 2000). Phillips et al., 2000a state that the performance of face recog­
nition algorithms is severely affected when the images used for comparison 
are captured using different camera types. Similarly, fingerprints obtained 
using multiple sensor technologies cannot be reliably compared (Ross and 
Jain, 2004) due to variations in sensor technology, image resolution, sens­
ing area, distortion effects, etc. Although progress has been made in the 
development of common data exchange formats to facilitate the exchange 
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Table 1,2, The false accept and false reject error rates associated with the fingerprint, face, voice 
and iris modalities. The accuracy estimates of biometric systems depend on a number of test 
conditions including the sensor employed, acquisition protocol used, subject disposition, number 
of subjects, number of biometric samples per subject, demographic profile of test subjects, subject 
habituation, time lapse between data acquisition, etc. 

Biometric 
Trait 

Fingerprint 

Fingerprint 

Face 

Voice 

Iris 

Test 

FVC 2004 (Maio 
et al., 2004) 

FpVTE 2003 (Wilson 
et al, 2004) 

FRVT 2002 (Phillips 
et al., 2003) 

NIST 2004 ( 
Przybocki and Martin, 

2004) 
ITIRT 2005 ( 
International 

Biometric Group, 
2005) 

Test 
Conditions 

Exaggerated 
skin distortion, 

rotation 
US Government 
operational data 
Varied lighting, 
outdoor/indoor, 

time 
Text 

independent, 
multi-lingual 

Indoor 
environment, 
multiple visits 

False 
Reject 
Rate 
2% 

0.1% 

10% 

5-10% 

0.99% 

False 
Accept 
Rate 
2% 

1% 

1% 

2-5% 

0.94% 

of feature sets between vendors (Podio et al., 2001), very little effort has been 
invested in the actual development of algorithms and techniques to match 
these feature sets. The US-VISIT program for example, obtains fingerprint 
(and face) information of millions of travelers arriving at U.S. airports and 
seaports. An optical fingerprint sensor is currently being used during the 
enrollment phase to procure fingerprint images. However, it is not guaran­
teed that a similar type of sensor will be used at a later time when verifying 
the same individual. It is possible that due to advancements in sensor tech­
nology, it will be more desirable and cost effective to use newer types of 
sensors. The cost and time involved in re-enrolling individuals every time 
the sensor is changed will be tremendous, and could potentially lead to huge 
bottlenecks in the system resulting in user inconvenience. In cases such as 
these, the need for feature extraction and matching algorithms that oper-
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Figure 1.11. Non-universality of fingerprints. The four impressions of a user's fingerprint 
shown here cannot be enrolled by most fingerprint systems due to the poor image quality of the 
ridges. Consequently, alternate methods must be adopted in order to include this user in the 
biometric authentication system. 

ate seamlessly across different sensors is paramount and will significantly 
impact the usability of the system over a period of time. 

6 Spoof attacks: Spoofing involves the deliberate manipulation of one's bio­
metric traits in order to avoid recognition, or the creation of physical bio­
metric artifacts in order to take on the identity of another person. This 
type of attack is especially relevant when behavioral traits such as signa­
ture (Harrison, 1981) and voice (Eriksson and Wretling, 1997) are used. 
However, physical traits such as fingerprints and iris are also susceptible 
to spoof attacks (Matsumoto et al., 2002; Matsumoto et al., 2004). The 
possibility of generating digital artifacts of biometric characteristics in or­
der to circumvent a biometric system has also been demonstrated (see Hill, 
2001; Adler, 2003; Uludag and Jain, 2004; Ross et al., 2005). Spoof attacks, 
when successful, can severely undermine the security afforded by a biomet­
ric system. There are several ways to address issues related to spoofing. In 
the case of physical traits, such as fingerprint and iris, a liveness detection 
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Figure 1.12. A biometric system is vulnerable to a variety of attacks (adapted from Ratha et al., 
2001). For functional integrity, there should be protocols in place that deflect, detect and rectify 
the consequences of these attacks. 

scheme may be used to detect artifacts; in the case of behavioral traits, a 
challenge-response mechanism may be employed to detect spoofing (United 
Kingdom Biometric Working Group, 2003). 

7 Other vulnerabUities: A biometric system, like any other security appH-
cation, is vulnerable to a broad range of attacks. Ratha et al., 2001 identify 
several levels of attacks that can be launched against a biometric system 
(Figure 1.12): (i) a fake biometric trait such as an artificial finger may be 
presented at the sensor, (ii) illegally intercepted biometric data may be re­
submitted to the system, (iii) the feature extractor may be replaced by a 
Trojan horse program that produces pre-determined feature sets, (iv) legiti­
mate feature sets may be replaced with synthetic feature sets, (v) the matcher 
may be replaced by a Trojan horse program that always outputs high scores 
thereby defying system security, (vi) the templates stored in the database 
may be modified or removed, or new templates may be introduced in the 
database, (vii) the data in the communication channel between two mod­
ules of the system may be altered, and (viii) the final decision output by the 
biometric system may be overridden. This demands the design of effective 
countermeasures that can be used to prevent or detect these attacks. 

1.8 Biometric standards 
With the increased deployment of biometric-based authentication solutions 

in several civilian and government applications, there is a definite need for 
standardization of biometric systems in order (a) to facilitate interoperability 
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between vendors, and (b) to ensure that biometric sub-systems can be easily 
integrated into a variety of applications. To this end, there have been concerted 
efforts to draft biometric standards, a few of which are listed below. 

1 INCITS Ml: The International Committee for Information Technology 
Standards (INCITS) in the United States is involved in the standardization 
of Information and Communication Technology (ICT). It is accredited by 
the American National Standards Institute (ANSI) and operates under the 
rules instituted by ANSI. In November 2001, INCITS established a Tech­
nical Committee for Biometrics called Ml (h t tp : //www. n c i t s . org/ tc_ 
home/ml .htm) in order to develop biometric standards for application pro­
gram interfaces, security mechanisms, data interchange formats, common 
file formats, data quality, performance testing, etc. Ml consists of several 
task groups: (i) Ml.2 deals with the interfaces between biometric com­
ponents and sub-systems; (ii) Ml.3 handles data interchange formats for 
fingerprint, face, iris, signature and hand geometry; (iii) Ml.4 focuses on 
biometric application profiles pertaining to transportation workers, border 
management and point-of-sale transactions; (iv) Ml.5 develops metrics for 
measuring and reporting biometric performance; and (v) Ml.6 investigates 
the use of technical solutions, such as privacy enhancing measures, to ad­
dress cross jurisdictional and societal issues related to the implementation of 
biometrics. Apart from these task groups, Ml also supports ad-hoc groups 
working on multibiometric systems (Ml ad-hoc group), biometric data qual­
ity (Ml.3 ad-hoc group) and e-authentication (Ml.4 ad-hoc group). 

2 ISO/IECJTC1SC37: The International Standards Organization (ISO) and 
the International Electrotechnical Commission (lEC) established the Joint 
Technical Committee 1 (JTCl) to help in the standardization of Information 
Technology. In June 2002, JTCl initiated a new sub-committee, SC37, 
on biometrics ( s e e h t t p : / / i s o t c . iso.org) . This sub-committee has six 
Working Groups (WGs) dealing with biometric vocabulary and definitions 
(WGOl), biometric technical interfaces (WG02), biometric data interchange 
formats (WG03), application profiles for biometric applications (WG04), 
biometric testing and reporting (WG05) and the societal aspects of biometric 
implementation (WG06). The Ml Technical Committee on biometrics, in 
fact, serves as the United States Technical Advisory Group (US-TAG) for 
ISO/IECJTCl SC37. 

3 CBEFF: The Common Biometric Exchange File Format (CBEFF) is in­
tended to facilitate exchange of biometric data between vendors or even 
between different components of a biometric system (Podio et al., 2001). 
The information to be exchanged may be raw data (e.g., a fingerprint image), 
processed data (e.g., an enhanced fingerprint image), or a feature set repre­
senting the raw data (e.g., minutiae points in a fingerprint image). CBEFF 
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defines a set of data elements that are common across multiple biometric 
technologies. These data elements are placed under three major sections: 
(i) the Standard Biometric Header (SBH), (ii) the Biometric Specific Mem­
ory Block (BSMB), and (iii) the Signature Block (SB). By adopting such 
a storage format, CBEFF facilitates the co-existence of multiple biometric 
technologies in a single system. 

4 Bio API: The Bio API standard embraces specifications for a standardized 
Application Programming Interface (API) that would accommodate a wide 
range of biometric modalities, devices and appHcations (http://www. 
b ioap i . org/). This API is intended for biometric integrators and ap­
plication programmers to develop device independent biometric solutions. 
Currently, there are two different versions of the API. The BioAPI 1.1 stan­
dard is an American National Standard (ANSI/INCITS 358:2002) developed 
by the BioAPI Consortium comprising of over 120 companies and organiza­
tions; the BioAPI 2.0 standard, on the other hand, is an international standard 
(ISO/IEC 19794-1:2005) that was developed by the standards committee for 
biometrics within ISO (i.e., ISO/IEC JTCl SC37). These standards define 
an interface for executing tasks related to enrollment, verification and iden­
tification of users. The Biometric Identification Record (BIR) of the BioAPI 
standard conforms to CBEFF requirements. 

5 ANSI X9.84: The X9.84 standard by the American National Standards 
Institute (ANSI) deals with the secure collection, storage, management 
and transmission of biometric data. X9.84 supports different types of key-
management methods (e.g., constructive key management) and digital cer­
tificates (e.g., domain certificate). Thus, this protocol extends confidential­
ity, integrity and non-repudiation to the biometric data pertaining to various 
modalities (American National Standards Institute, 2003). The biomet­
ric object specified by ANSI X9.84 conforms to CBEFF requirements and 
can, in principle, operate with the Biometric Identification Record (BIR) of 
BioAPI. 

1.9 Multibiometric systems 
As discussed in Section 1.2, the biometric trait of an individual is character­

ized by a set of discriminatory features or attributes. In many instances, this 
feature set can be represented by a fixed d-dimensional feature vector, with d 
denoting the number of feature values used (exceptions include (i) fingerprint 
minutiae, where the number of features can vary across images, and (ii) Hid­
den Markov Model (HMM) for speech recognition, where the number of state 
transitions may vary across utterances). The d-dimensional feature set of an ar­
bitrary individual often resides in a subspace manifold that overlaps with those 
of other individuals enrolled in the system. Thus, for a fixed identification error 
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rate, the number of unique users that can be accommodated in the biometric 
system is naturally restricted due to this inherent constraint. Population char­
acteristics such as non-universality and operational factors such as noisy input 
data further restrict this number. Hence, fine tuning the system parameters (of 
the feature extractor and matcher) cannot be expected to provide continuous 
performance improvement. Consider a scenario that necessitates every living 
individual in the planet (~ 6 billion) to be enrolled in a single biometric sys­
tem operating in the identification mode. If the face modality is used, then an 
upper bound on the performance of the system will be based on the number 
of identical twins. Similarly, if the voice biometric is used, the performance 
will be limited by the number of people who are unable to speak coherently. 
Therefore, the performance of a biometric system employing a single trait is 
constrained by these intrinsic factors. 

This inherent limitation can be alleviated by fusing the information presented 
by multiple sources. For example, the face and gait traits, or multiple images of 
the face, or the fingerprints of the right and left index fingers of an individual may 
be used together to resolve the identity of an individual. Fusion in biometrics 
helps "expand" the feature space used to represent individuals. This increases 
the number of people that can be effectively enrolled in a certain personal 
identification system. A system that consolidates the evidence presented by 
multiple biometric sources (i.e., cues) is known as a multibiometric system. 
These systems are also expected to be more reliable due to the availability of 
multiple pieces of evidence (Hong et al., 1999). 

The use of multiple biometric sources for authentication was originally re­
ferred to as /fl_ŷ r̂ (i biometrics (Atick, 2002; Most, 2003). The term was used to 
indicate the integration of decisions (i.e., "match" or "no-match") rendered by 
multiple biometric systems. However, it is possible to integrate other types of 
information also, such as match scores, feature sets, raw data, etc. (besides the 
individual decisions) originating from multiple biometric sources. The term 
multibiometrics denotes the fusion of different types of information and is, 
therefore, much broader in scope than layered biometrics. The problem of con­
solidating the information or evidence presented by multiple biometric sources 
is known as information fusion, which is the main focus of this book. One of 
the goals of this book is to lend structure to the amorphous body of research 
that has been conducted in the field of multibiometrics. To this end, we have 
attempted to outline a framework that can be effectively used to understand 
the issues and progress being made in multibiometrics while identifying the 
challenges and potential research directions in this field. 

1.10 Summary 
Rapid advancements in the field of communications, computer networking 

and transportation, coupled with heightened concerns about identity fraud and 
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national security, has resulted in a pronounced need for reliable and efficient 
identity management schemes in a myriad of applications. The process of iden­
tity management in the context of a specific application involves the creation, 
maintenance and obliteration of identities while ensuring that an impostor does 
not fraudulently gain privileges associated with a legitimately enrolled indi­
vidual. Traditional authentication techniques based on passwords and tokens 
are limited in their ability to address issues such as negative recognition and 
non-repudiation. The advent of biometrics has served to address some of the 
shortcomings of traditional authentication methods. Biometric systems use the 
physical and behavioral characteristics of an individual such as fingerprint, face, 
hand geometry, iris, gait and voice to establish identity. A broad spectrum of 
establishments can engage the services of a biometric system including travel 
and transportation, financial institutions, health care, law enforcement agencies 
and various government sectors. 

The deployment of biometrics in civilian and government applications has 
raised questions related to the privacy accorded to an enrolled individual ( 
Davies, 1994). Specifically, questions such as (i) "Will biometric data be used 
to track people covertly thereby violating their right to privacy?", (ii) "Can the 
medical condition of a person be surreptitiously elicited from the raw biometric 
data?", (iii) "Will the acquired biometric data be used only for the intended 
purpose, or will it be used for previously unexpressed functions, hence result­
ing in functionality creepT, (iv) "Will various biometric databases be linked in 
order to deduce an individual's social and financial profile?", and (v) "What are 
the consequences of compromising a user's biometric data?", have advocated 
societal concerns about the use of biometric solutions in large-scale applica­
tions. The promotion of Privacy-Enhancing Technologies (PETs) can assuage 
some of the legitimate concerns associated with biometric-enabled technology 
(Rejman-Greene, 2005; Kenny and Borking, 2002). For example, the use of 
personal smart cards to store and process the biometric template of an indi­
vidual can mitigate public concerns related to placing biometric information 
in a centralized database. Apart from technological solutions to address pri­
vacy concerns, government regulations are also required in order to prevent the 
inappropriate transmission, exchange and processing of biometric data. 

The matching performance of a biometric system is affected by several factors 
including noisy data, large intra-class variations, and improper user interaction 
(BoUe et al., 2003). There is an implicit upper bound on the matching accuracy 
of any biometric system. Jain et al., 2004b suggest three primary reasons for 
this inherent constraint: 

1 Information limitation: The magnitude of discriminatory information avail­
able in a biometric trait is naturally restricted. For example, hand geom­
etry measurements can distinguish fewer identities than, say, fingerprints 
(Pankanti et al., 2002). 
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2 Representation limitation: The ideal representation scheme for a particular 
biometric trait should be designed to retain all invariant and discriminatory 
information in the sensed measurements. Practical feature extraction sys­
tems, typically based on simplistic models of biometric data, fail to capture 
the richness of information in a realistic biometric input resulting in the 
inclusion of redundant or spurious features, and the exclusion of salient fea­
tures. Consequently, a significant fraction of legitimate feature space cannot 
be handled by the biometric system resulting in authentication errors (FAR 
and FRR). 

3 Matcher limitation: Given a particular representation scheme, the design of 
an ideal matcher should perfectly model the invariant relationship between 
different patterns (i.e, biometric samples) originating from the same class 
(i.e, identity). In practice, however, a matcher may not correctly model 
the invariance (e.g., due to non-availability of sufficient number of training 
samples) resulting in poor matcher accuracy. 

Multibiometrics is expected to alleviate some of the limitations of unibio-
metric systems by consolidating the evidence presented by multiple biometric 
sources. This integration of evidence is known as information fusion and, if 
appropriately done, can enhance the matching accuracy of a recognition sys­
tem. Thus, a properly designed multibiometric system can improve matching 
accuracy, increase population coverage and deter spoofing activities. With bio­
metrics already being chosen to deliver crucial societal functions, it is only 
a matter of time before multibiometric systems begin to impact the way we 
perform identity management in the 21st century. 
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Notes 
1 The identity of an individual may be viewed as the information associated 

with that person in a particular identity management system. For example, 
a bank issuing credit cards typically associates a customer with her name, 
password, social security number, address and date of birth. Thus, the 
identity of the customer in this application will be defined by these personal 
attributes (i.e., name, address, etc.). The interested reader is referred to Kent 
and Millett, 2003 for a discussion on this terminology. 

2 The term biometric authentication is perhaps more appropriate than bio­
metrics since the latter has been historically used in the field of statistics 
to refer to the analysis of biological (particularly medical) data (Wayman 
et al., 2005). For brevity sake, we adopt the term biometrics in this book. 

3 It behooves us to point out that, strictly speaking, FMR and FNMR are not 
always synonymous with FAR and FRR, respectively (see Mansfield and 
Wayman, 2002 and Maltoni et al., 2003). However, in this book we treat 
them as being equivalent. 



Chapter 2 

INFORMATION FUSION IN BIOMETRICS 

2.1 Introduction 
Information fusion has a long history and the theory of multiple classifier 

systems (MCS) has been rigorously studied over the past several years (Ghosh, 
2002). In fact information fusion is an integral part of various application 
domains ranging from automatic target recognition (ATR) and remote sensing 
to weather forecasting, object tracking and robotics. The concept of fusion has 
been studied under several different terminologies (Ho, 2002; Kuncheva et al., 
2001), including 

• stacked generalizations (Wolpert, 1990) 

• classifier ensembles (Drucker et al., 1994) 

• hybrid methods (Bunke and Kandel, 2002) 

• cooperative agents (Tan, 1997) 

• dynamic classifier selection (Woods et al., 1997) 

• opinion pool (Benediktisson and Swain, 1992) 

• sensor fusion (Iyengar et al., 1995) 

• mixture of experts (Jacobs et al., 1991) 

• consensus aggregation (Benediktisson and Swain, 1992) 

• divide-and-conquer classifiers (Chiang and Fu, 1994) 

• social choice functions (Arrow, 1963). 
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Ho, 2002 states that there has been a paradigm shift in the approach to solving 
pattern recognition problems: 

Instead of looking for the best set of features and the best classifier, now we look for the 
best set of classifiers and then the best combination method. 

The goal of information fusion, therefore, is to determine the best set of 
experts in a given problem domain and devise an appropriate function that 
can optimally combine the decisions rendered by the individual experts (Figure 
2.1). A similar philosophy has been advocated by several researchers, including 
Minsky (Minsky, 1991) who states 

To solve really hard problems, we'll have to use several different representations .... 

and. 

It is time to stop arguing over which type of pattern classification technique is best 
because that depends on our context and goal. Instead we should work at a higher level 
of organization and discover how to build managerial systems to exploit the different 
virtues and evade the different limitations of each of these ways of comparing things. 

We briefly examine the role of data fusion in different applications. The 
purpose is to indicate to the reader the diversity of scientific fields that rely on 
information fusion schemes. 

1 Weather forecasting: An elaborate weather forecasting system relies on 
the evidence provided by diverse sources of information such as geosta­
tionary meteorological satellites, weather balloons/planes, ground stations, 
radars, automated buoys, etc. in order to compute geophysical parameters 
of interest. These geophysical parameters are then collectively interpreted 
by an automated system to facilitate weather forecasting. The system also 
relies on previous results of weather prediction (temporal information) to 
continually refine its outputs (Palmer, 2000). 

2 UAV swarms: A group of unmanned aerial vehicles (UAVs), searching for 
a mobile evasive target in a potentially hazardous environment, has to deter­
mine a flight arrangement that optimizes the integrated sensing capability 
of component UAVs (Vachtsevanos et al., 2004). In this type of scenario, an 
optimal flight configuration has to be derived based on the nature of the data 
acquired by the individual UAVs, constraints on the amount of information 
that can be transmitted between UAVs and the possibility of losing a UAV 
(e.g., UAV missing in action). An appropriate fusion architecture is neces­
sary to accommodate the dynamics of the topology as well as the reliability 
of the sensor data obtained in order to generate efficient actions. 

3 Object detection: Many applications attempt to detect and establish the 
trajectories of objects based on the evidence supplied by multiple image 
modalities. The fusion of visible and non-visible information pertaining to 
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Figure 2.1. Two general approaches to solving a pattern recognition problem. Each cell in this 
diagram indicates the application of a particular classifier, Ci, to a specific pattern representation 
(i.e., feature set), Fj. The approach in (a) is to determine the best set of features and the best 
classifier, while in (b) the goal is to determine the best set of classifiers and an optimal fusion 
algorithm to integrate these classifiers. The feature sets F i , F 2 , . . . ,FN do not have to be 
mutually exclusive. 
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different wavelengths in the electromagnetic spectrum (e.g., radar and infra­
red images, or thermal and visible spectrum images) can assist in estimating 
the location and kinematic features of objects such as T-72 tanks or a squad of 
soldiers in a night-time battlefield. These applications rely on image fusion 
methodologies to combine multiple modalities (Blum and Liu, 2006). 

4 Robot navigation: A robot is typically fitted with a variety of sound, light, 
image, range, proximity and force sensors that permit it to record its environ­
ment. In order to determine a suitable action (e.g., move right or tilt camera 
at a certain angle), the data acquired using these multiple sensors are pro­
cessed simultaneously (Abidi and Gonzalez, 1992). Sensor integration in a 
modular framework is a challenging task since it entails the reconciliation 
of non-commensurate data. 

5 Land mine detection: Several types of sensor technologies are being used 
to detect buried land mines. These include electromagnetic induction (EMI), 
ground penetrating radar (GPR), infra-red imaging (IR), quadrupole reso­
nance (QR), chemical detectors and sensors of acoustically induced sur­
face vibrations (Gunatilaka and Baertlein, 2001). In many cases, the data 
presented by these multiple sensors are concurrently used to improve the 
accuracy of land mine detection algorithms. 

2.2 Fusion in biometrics 
Humans recognize one another based on the evidence presented by mul­

tiple biometric characteristics (behavioral or physical) in addition to several 
contextual details associated with the environment. The recognition process 
itself may be viewed as the reconciliation of evidence pertaining to these mul­
tiple modalities. Each modality on its own cannot always be reliably used to 
perform recognition. However, the consolidation of information presented by 
these multiple experts can result in the accurate determination or verification 
of identity. 

Biometric systems can also be designed to recognize a person based on 
information acquired from multiple biometric sources. Such systems, known 
as multibiometric systems, can be expected to be more accurate due to the 
presence of multiple pieces of evidence (Hong et al., 1999). Multibiometric 
systems offer several advantages over traditional (uni)biometric systems. Some 
of these advantages are listed below. 

1 Multibiometric systems can offer substantial improvement in the matching 
accuracy of a biometric system depending upon the information being com­
bined and the fusion methodology adopted. Thus, the FAR and the FRR 
of the verification system can be reduced simultaneously. Furthermore, the 
availability of multiple sources of information increases the feature space 
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available to individuals and, hence, the capacity of an identification system 
may be increased in order to accommodate more individuals. 

2 Multibiometrics addresses the issue of non-universality or insufficient pop­
ulation coverage. If a person's dry fingers prevent him from successfully 
enrolling into a fingerprint system, then the availability of another biomet-
ric trait, say iris, can aid in the inclusion of this individual in the identity 
management system. A certain degree of flexibility is achieved when a user 
enrolls into the system using several different traits (e.g., face, voice, finger­
print, iris, hand) while only a subset of these traits (e.g., face and voice) is 
requested during authentication based on the nature of the application under 
consideration and the convenience of the user. 

3 It becomes increasingly difficult (if not impossible) for an impostor to spoof 
multiple biometric traits of a legitimately enrolled individual. If each sub­
system indicates the probability that a particular trait is a 'spoof, then 
appropriate fusion schemes can be employed to determine if the user, in 
fact, is an impostor. Furthermore, by asking the user to present a random 
subset of traits at the point of acquisition, a multibiometric system facilitates 
a challenge-response type of mechanism, thereby ensuring that the system 
is interacting with a live user. Note that a challenge-response mechanism 
can be initiated in unibiometric systems also (e.g., system prompts "Please 
say 1-2-5-7", "Blink twice and move your eyes to the right", "Change your 
facial expression by smiling", etc.). 

4 Multibiometric systems also effectively address the problem of noisy data. 
When the biometric signal acquired from a single trait is corrupted with 
noise, the availability of other (less noisy) traits may aid in the reliable de­
termination of identity. Some systems take into account the quality of the 
individual biometric signals during the fusion process. This is especially 
important when recognition has to take place in adverse conditions where 
certain biometric traits cannot be reliably extracted. For example, in the 
presence of ambient noise, when an individual's voice characteristics can­
not be accurately measured, the facial characteristics may be used by the 
multibiometric system to perform authentication. Estimating the quality of 
the acquired data is in itself a challenging problem but, when appropriately 
done, can reap significant benefits in a multibiometric system. 

5 These systems also help in the continuous monitoring or tracking of an 
individual in situations when a single trait is not sufficient. For example, a 
person walking down a crowded aisle can be recognized using his face and 
gait cues. However, depending upon the distance and pose of the subject with 
respect to the camera, both these characteristics may not be simultaneously 
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available. Therefore, either (or both) of these traits can be used depending 
upon the situation. 

6 A multibiometric system may also be viewed as a fault tolerant system which 
continues to operate even when certain biometric sources become unreliable 
due to sensor or software malfunction, or deliberate user manipulation. The 
notion of fault tolerance is especially useful in large-scale authentication 
systems handling a large number of users (e.g., a border control system). 

2.3 Issues in designing a multibiometric system 
Multibiometric systems rely on the evidence presented by multiple sources 

of biometric information. An information fusion scheme in the context of bio­
metrics raises several design questions as we will see shortly. Primary among 
these is the design of a suitable human computer interface (HCI) that would 
permit the efficient acquisition of an individual's biometric information. An 
appropriately designed interface can ensure that multiple pieces of evidence 
pertaining to an individual's identity are reliably acquired whilst causing min­
imum inconvenience to the user (Oviatt, 2003). Consider the user interface 
shown in Figure 2.2 which acquires the face, fingerprint and hand geometry in­
formation of an individual. This particular arrangement of the scanners might 
make it tedious for the person to interact with the system since the hand ge­
ometry and fingerprint sensors are spatially separated requiring the individual 
to explicitly interact with these two sensors. A better arrangement would be to 
integrate these two sensors into a single device thereby capturing the hand and 
fingerprint modalities simultaneously with minimum user inconvenience. As 
one moves from unimodal to multimodal systems, it is imperative that HCIs be 
carefully designed. 

Some of the other factors that impact the design and structure of a multibio­
metric system are described below. 

1 Cost benefits: What is the tradeoff between the added cost and the im­
provement in matching performance? The cost is a function of the number 
of sensors deployed, the time taken to acquire the biometric data, the stor­
age requirements, the processing time of the algorithm and the perceived 
(in)convenience experienced by the user. 

2 Determining sources of biometric information: What are the various 
sources of biometric information that can be used in a multibiometric sys­
tem? Which of these sources are relevant to the application at hand? 

3 Acquisition and processing sequence: Should the data corresponding to 
multiple information sources (e.g., modalities) be acquired simultaneously 
or at different time instances, as the need arises, in a serial fashion? Simi-
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Figure 2.2. A multimodal interface to acquire face, fingerprint and hand geometry images of 
a person. A well designed interface can enhance user convenience and ensure that multiple 
sources of evidence are reliably acquired. In this example, integrating the hand and fingerprint 
input devices into a single unit may be beneficial as it would reduce the burden on the individual 
to explicitly interact with two spatially separated devices. 

larly, should the information acquired be processed sequentially or simul­
taneously? 

4 lype of information: What type of information or attributes (i.e., features, 
match scores, decisions, etc.) is to be fused? What is the impact of corre­
lation among the sources of information on the performance of the fusion 
system? 

5 Fusion methodology: What fusion scheme should be employed to combine 
the information presented by multiple biometric sources? Is it possible to 
predict the performance gain obtained using different fusion methodologies 
in order to determine the optimal one? 

To make a business case for multibiometric systems, it is necessary to mea­
sure the performance gain as a function of the cost incurred in deploying such a 
system. The addition of multiple sensors, for example, would increase the cost 
of the system significantly especially if the user interface has to be altered in 
order to accommodate new devices. Furthermore, the throughput of the system 
can potentially decrease if the time taken to acquire the biometric data corre­
sponding to multiple traits is high. While it is possible to quantify the additional 
cost of sensors and the increased authentication time, it is substantially difficult 
to quantify the system's ability to deter potential impostors from launching a 
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spoof attack (if multiple traits are used). Similarly, it may not be possible to 
quantify the time needed (number of authentication attempts) for user habitua­
tion and the potential inconvenience as perceived by the user. In light of this, 
the benefit of a multibiometric system is often evaluated based on its matching 
accuracy, the number of users that can be accommodated in the system, the 
cost of adding new sensors and the additional time required for acquiring and 
processing multiple traits both during enrollment and authentication. 

Specified performance and cost 

List of available 
biometric traits Selected 

biometric traits 

Figure 2.3. Multimodal biometric systems utilize different body traits to establish identity. In 
principle, a large number of traits can be used to improve the identification accuracy. In practice, 
factors such as cost of deployment, finite training sample size, throughput time and user training 
will limit the number of traits used in a particular application. 

2.4 Sources of multiple evidence 
What are the sources of information that can be considered in a multibio­

metric system? We address this question by introducing some terminology to 
describe the various scenarios that are possible to obtain multiple sources of ev­
idence (see Figure 2.4). In the first four scenarios described below, information 
fusion is accomplished using a single trait, while in the fifth scenario multiple 
traits are used. 

1 Multi-sensor systems: In these systems, a single biometric trait is im­
aged using multiple sensors in order to extract diverse information from 
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Figure 2.4. The various sources of information in a multibiometric system: multi-sensor, multi-
algorithm, multi-instance, multi-sample and multimodal. In the first four scenarios, a single 
biometric trait provides multiple sources of evidence. In the fifth scenario, different biometric 
traits are used to obtain evidence. 

(spatially) registered images. For example, a system may record the two-
dimensional texture content of a person's face using a CCD camera and the 
three-dimensional surface shape of the face using a range sensor in order to 
perform authentication. The introduction of a new sensor (in this case, the 
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range sensor) to measure the facial surface variation increases the cost of 
the multibiometric system. However, the availabihty of multi-sensor data 
pertaining to a single trait can assist the segmentation and registration proce­
dures also (Bendjebbour et al., 2001) besides improving matching accuracy. 

Marcialis and Roli, 2004a discuss a scheme to fuse the fingerprint informa­
tion of a user obtained using an optical and a capacitive fingerprint sensor 
(spatial registration between the two sensors is not necessary in this case). 
The authors, in their work, indicate that the two sensors provide comple­
mentary information thereby resulting in better matching accuracy. They 
also suggest the possibility of employing a dynamic sensor selection scheme 
(Woods et al., 1997; Giacinto and Roli, 2001) wherein, based on the nature 
of the input data obtained from the two sensors, the information from only 
one of the sensors may be used to perform recognition. Chen et al., 2005a 
examine the face images of an individual obtained using a thermal infrared 
camera and a visible light camera. They demonstrate that integrating the 
evidence supplied by these two images (both at the score-level and rank-
level) improves matching performance. Socolinsky and Selinger, 2004 and 
Heo et al., 2004 also demonstrate the benefits of using thermal infrared and 
visible light imagery for face recognition. 

2 Multi-algorithm systems: In these systems, the same biometric data is pro­
cessed using multiple algorithms. For example, a texture-based algorithm 
and a minutiae-based algorithm can operate on the same fingerprint image 
in order to extract diverse feature sets that can improve the performance of 
the system (Ross et al., 2003). This does not require the use of new sensors 
and, hence, is cost-effective. Furthermore, the user is not required to interact 
with multiple sensors thereby enhancing user convenience. However, it does 
require the introduction of new feature extractor and/or matcher modules 
which may increase the computational requirements of the system (Figure 
2.5). 

A multi-algorithm system can use multiple feature sets (i.e., multiple rep­
resentations) extracted from the same biometric data or multiple matching 
schemes operating on a single feature set. Lu et al., 2003 discuss a face 
recognition system that employs three different feature extraction schemes 
(Principal Component Analysis (PCA), Independent Component Analysis 
(ICA) and Linear Discriminant Analysis (LDA)) to encode (i.e., represent) a 
single face image. The authors postulate that the use of different feature sets 
makes the system robust to a variety of intra-class variations normally asso­
ciated with the face biometric. Experimental results indicate that combining 
multiple face classifiers can enhance the identification rate of the biomet­
ric system. Han and Bhanu, 2005 present a context-based gait recognition 
system which invokes and combines two gait recognition classifiers based 
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on the walking surface. A probabilistic approach is used to combine the 
participating classifiers. The authors demonstrate that using context infor­
mation in a fusion framework has the potential to improve the identification 
rate of the system. Jain et al., 1999c fuse the evidence of three different 
fingerprint matchers to determine the similarity between two minutiae sets. 
The three minutiae matchers considered in their system are based on the 
Hough transform, one-dimensional string matching and two-dimensional 
dynamic programming. They observe that the matching performance ob­
tained by combining two of the three matchers is comparable to combining 
all the three matchers. Factors such as the correlation between compo­
nent algorithms, the disparity in their matching accuracies, and the fusion 
methodology adopted significantly impact the performance obtained after 
fusion. 

Transformation parameters to align query with template 
before extracting ridge feature map of query 

Query image 

Matching llfelJ 

Ridge feature map 

Query Template 

Figure 2.5. The multi-algorithm fingerprint matcher designed by Ross et al., 2003. The system 
utilizes both minutiae and texture information to represent and match two fingerprint images 
(query and template). The minutiae matching module provides the transformation parameters 
necessary to align the query image with the template before extracting the texture information 
from the former. The texture information is represented using ridge feature maps. 

3 Multi-instance systems: These systems use multiple instances of the same 
body trait and are also referred to as multi-unit systems in the literature. 
For example, the left and right index fingers, or the left and right irises of 
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an individual may be used to verify an individual's identity. These systems 
generally do not necessitate the introduction of new sensors nor do they en­
tail the development of new feature extraction and matching algorithms and 
are, therefore, cost efficient. However, in some cases, a new sensor arrange­
ment might be necessary in order to facilitate the simultaneous capture of 
the various units/instances. Automated Fingerprint Identification Systems 
(AFIS), that obtain ten-print information from a subject, can benefit from 
sensors that are able to rapidly acquire impressions of all ten fingers. Multi-
instance systems are especially beneficial for users whose biometric traits 
cannot be reliably captured due to inherent problems. For example, a single 
finger may not be a sufficient discrirninator for a person having dry skin. 
However, the integration of evidence across multiple fingers may serve as 
a good discriminator in this case. Similarly, an iris system may not be able 
to image significant portions of a person's iris due to drooping eyelids. The 
consideration of both the irides will result in the availability of more texture 
information that can be used to establish the individual's identity in a more 
reliable manner. Multi-instance systems are often necessary in applications 
where the size of the system database (i.e., the number of enrolled individu­
als) is very large (FBI's database currently has ~ 50 million ten-print images 
and multiple fingers provide additional discriminatory information). 

4 Multi-sample systems: A single sensor may be used to acquire multiple 
samples of the same biometric trait in order to account for the variations 
that can occur in the trait, or to obtain a more complete representation of 
the underlying trait. A face system, for example, may capture (and store) 
the frontal profile of a person's face along with the left and right profiles 
in order to account for variations in the facial pose. Similarly, a fingerprint 
system equipped with a small size sensor may acquire multiple dab prints 
of an individual's finger in order to obtain images of various regions of the 
fingerprint. A mosaicing scheme may then be used to stitch the multiple 
impressions and create a composite image. One of the key issues in a multi-
sample system is determining the number of samples that have to be acquired 
from an individual. It is important that the procured samples represent the 
variability as well as the typicality of the individual's biometric data. To 
this end, the desired relationship between the samples has to be established 
before-hand in order to optimize the benefits of the integration strategy. 
For example, a face recognition system utilizing both the frontal- and side-
profile images of an individual may stipulate that the side-profile image 
should be a three-quarter view of the face (Hill et al., 1997; O'Toole et al., 
1995). Alternately, given a set of biometric samples, the system should be 
able to automatically select the "optimal" subset that would best represent 
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the individual's variability. Uludag et al., 2004 discuss two such schemes 
in the context of fingerprint recognition. 

5 Multimodal systems: These systems combine the evidence presented by 
different body traits for establishing identity. For example, some of the 
earliest multimodal biometric systems utilized face and voice features to 
establish the identity of an individual (Brunelli and Falavigna, 1995). Phys­
ically uncorrected traits (e.g., fingerprint and iris) are expected to result in 
better improvement in performance than correlated traits (e.g., voice and lip 
movement). The cost of deploying these systems is substantially more due 
to the requirement of new sensors and, consequently, the development of 
appropriate user interfaces. The identification accuracy can be significantly 
improved by utilizing an increasing number of traits although the curse-of-
dimensionality phenomenon would impose a bound on this number. The 
curse-of-dimensionality limits the number of attributes (or features) used in 
a pattern classification system when only a small number of training samples 
is available (Jain and Chandrasekaran, 1982). The number of traits used in 
a specific application will also be restricted by practical considerations such 
as the cost of deployment, enrollment time, throughput time, expected error 
rate, user habituation issues, etc. 

6 Hybrid systems: Chang et al., 2005 use the term hybrid to refer to systems 
that integrate a subset of the five scenarios discussed above. For example, 
Brunelli and Falavigna, 1995 describe an arrangement in which two speaker 
recognition algorithms are combined with three face recognition algorithms 
at the match score and rank levels via a HyperBF network. Thus, the system 
is multi-algorithmic as well as multimodal in its design. Similarly, the 
NIST BSSRl dataset (National Institute of Standards and Technology, 2004) 
has match scores pertaining to two different face matchers operating on 
the frontal face image of an individual (multi-algorithm), and a fingerprint 
matcher operating on the left- and right-index fingers of the same individual 
(multi-instance). Hybrid systems attempt to extract as much information as 
possible from the various biometric modalities. 

Besides the above scenarios, it is also possible to use biometric traits in 
conjunction with non-biometric identity tokens in order to enhance the au­
thentication performance. For example, Jin et al., 2004 discuss a dual factor 
authenticator that combines a pseudo random number (present in a token) with a 
facial feature set in order to produce a set of user-specific compact codes known 
as BioCode. The pseudo random number and the facial feature sets are fixed 
in length and an iterated inner product is used to generate the BioCode. When 
an individual's biometric information is suspected to be compromised, then the 
token containing the random data is replaced, thereby revoking the previous au­
thenticator. The use of biometric and non-biometric authenticators in tandem 
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is a powerful way of enhancing security. However, some of the inconveniences 
associated with traditional authenticators remain (such as "Where did I leave 
my token?"). 

Beattie et al., 2005 discuss a scenario in which biometric sensors are placed 
at various locations in a building in order to impart security to individual facili­
ties/rooms (Figure 2.6). The building is partitioned into various zones based on 
access privileges assigned to different users of the building. The authentication 
decision rendered at a particular zone (for a specific user) may depend on the 
decisions made previously in other zones (for the same user). Furthermore, 
in very sensitive zones, a combination of biometric evidences may be used to 
validate an individual's identity, while in less sensitive zones, a single biomet­
ric evidence may be sufficient to establish identity. The fusion scheme used to 
combine the decisions of multiple sensors can also vary depending upon the 
zone that a user intends to enter. For example, the AND decision rule may be 
used in high security areas - a user can enter such a zone only when all the sen­
sors successfully confirm the individual's identity (see Varshney et al., 2002). 
Therefore, the scenario described by Beattie et al., 2005 permits the inclusion 
of multiple fusion rules involving multiple sensors in a dynamic architecture. 
The presence of biometric sensors in various zones can also aid in determining 
an individual's location within the building. 
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Figure 2.6. The scenario envisioned by Beattie et al., 2005 in which biometric sensors are 
installed at various locations within a building that is partitioned into various zones. The authen­
tication decision rendered at a particular location for a specific user, is a function of the decisions 
generated at other locations previously visited by the same user. Thus, there is an integration of 
evidence across space and time. Moreover, the fusion rule employed at a particular site can vary 
depending upon the security level of the associated zone. For example, in the above illustration, 
a user entering site B has to be verified using two biometric sensors whose decisions may be 
combined using the AND decision rule. 
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2.5 Acquisition and processing architecture 

As indicated earlier, the nature of the human computer interface adopted 
by a multibiometric system impacts its usabiUty. Specifically, the order or se­
quence of biometric data acquisition has a bearing on the convenience imparted 
to the user. The enrollment time and the failure to enroll (FTE) rate can be 
substantially reduced by designing an acquisition protocol that enhances user 
convenience while ensuring that good quality biometric data is obtained from 
the user. Also, the sequence in which the procured biometric data is processed 
can significantly impact the throughput time in large-scale identification sys­
tems (involving millions of enrolled users) since it may be possible to arrive at an 
identification decision rapidly. The various types of acquisition and processing 
architectures are discussed below. 

2.5.1 Acquisition sequence 

The acquisition sequence in a multibiometric system refers to the order in 
which the various sources of evidence are acquired from an individual (in the 
case of multi-algorithm systems, only a single biometric sample is required 
and, therefore, the acquisition methodology is not an issue). Typically, the 
evidence is gathered sequentially, i.e., each source is independently obtained 
with a short time interval between successive acquisitions. In some cases, 
the evidence may be acquired simultaneously. For example, the face and iris 
information of a user may be obtained nearly simultaneously by utilizing two 
cameras housed in the same unit. Similarly, the face, voice and lip movements 
of a user may be acquired simultaneously by using a video camera (Frischholz 
and Dieckmann, 2000). Simultaneous procurement of information presents 
the possibility of (spatially) registering the information gleaned from multiple 
sources. In a multimodal face and iris system, the face image may be used to 
estimate the gaze direction which can then assist in localizing the iris image 
(in several instances, eye localization precedes face detection; therefore, the 
system might first detect the eyes of the subject before attempting to locate the 
face). Socolinsky et al., 2003 discuss a face acquisition setup that is capable of 
obtaining face images pertaining to the visible as well as the longwave infrared 
(LWIR) spectrum. The sensor captures video sequences of an individual's face 
by employing a CCD array and a LWIR microbolometer. The procured image 
pair (each of size 240x320) is co-registered to sub-pixel accuracy. This makes 
it possible to have a one-to-one correspondence between salient facial features 
present in both the images. Kumar et al., 2003 present a setup that acquires the 
palmprint and hand geometry details of an individual using a single camera. 
Simultaneously procuring multiple modalities can decrease enrollment time in 
multibiometric systems. 
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2.5.2 Processing sequence 
The processing sequence adopted by a multibiometric system refers to the 

order in which the acquired information is used in order to render a decision. 
Here, the focus is not on the order of acquisition, but on the order in which the 
information is processed. Thus, information may be acquired sequentially but 
processed simultaneously. 

In the serial or cascade mode, the processing of information takes place 
sequentially. In Figure 2.7, the fingerprint information of the user is first pro­
cessed; if the fingerprint sub-system is unable to determine the identity, then the 
data corresponding to the face biometric is processed. In such an arrangement, 
the processing time can be effectively reduced if a decision is made before going 
through all the biometric subsystems. In the parallel mode, on the other hand, 
each sub-system processes its information independently at the same time and 
the processed information is combined using an appropriate fusion scheme (see 
Figure 2.8). 

The cascading scheme can improve user convenience as well as allow fast 
and efficient searches in large scale identification tasks. For example, when a 
cascaded biometric system has sufficient confidence on the identity of the user 
after processing the first modality, the user may not be required to provide the 
other traits. The system can also allow the user to decide which modality he/she 
would present first. Finally, if the system is faced with the task of identifying 
the user from a large database, it can utilize the outcome of each modality to 
successively prune the database, thereby making the search faster and more 
efficient. Thus, a cascaded system may be more convenient to the user and it 
generally requires a shorter recognition time compared to its parallel counter­
part. However, robust algorithms are essential to efficiently handle the various 
sequence of events that are possible. Hong and Jain, 1998 propose a cascaded 
system in which face recognition is used to retrieve the top n matching identities 
while fingerprint recognition is used to determine the final identity based on 
the retrieved identities only. This is significant because (i) face matching using 
fixed length feature vectors is generally faster than fingerprint matching; (ii) 
fingerprint identification is more accurate than face identification. Thus, the 
advantages of both modalities are exploited in this scheme (Figure 2.9). 

A multibiometric system designed to operate in the parallel mode generally 
has a higher accuracy because it utilizes more evidence about the user for 
recognition. Of course, in the cascade mode, as information from multiple 
sources is progressively accumulated, the system is also expected to have a 
higher accuracy. Most multibiometric systems proposed in the literature have 
a parallel architecture because the primary goal of system designers has been 
to reduce the error rates of biometric systems (see Ross and Jain, 2003, Snelick 
et al., 2005 and the references therein) and not necessarily the throughput and/or 
processing time. 
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Figure 2.7. In the cascade (or serial) mode of operation, evidence is incrementally processed 
in order to establish identity. This scheme is also known as sequential pattern recognition. It 
enhances user convenience while reducing the average processing time since a decision can be 
made without having to acquire all the biometric traits. 

Besides the two modes of operation discussed above, it is also possible to 
have a hierarchical (tree-like) architecture to combine the advantages of both 
cascade and parallel architectures (Maltoni et al., 2003). In such a scheme, a 
subset of the acquired modalities may be combined in parallel, while the re­
maining modalities may be combined in a serial fashion. Such an architecture 
can be dynamically determined based on the quality of the individual biomet­
ric samples as well as the possibility of encountering missing biometric data. 
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Figure 2.8. In the parallel mode of operation, the evidence acquired from multiple sources is 
simultaneously processed in order to establish identity. Note that the evidence pertaining to the 
multiple sources may be acquired in a sequential fashion. 
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Figure 2.9. The cascade mode of processing permits database indexing where one modality can 
be used to retrieve a subset of identities while the second modality determines the best match. 
In this example, the face system is employed to recover the top n matches while the fingerprint 
system decides the identity of the user based on the n retrieved matches. 
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However, the design of a hierarchical multibiometric system has not received 
much attention from researchers. 

2.6 Levels of fusion 

In a typical pattern recognition system, the amount of information available 
to the system gets compressed as one proceeds from the sensor module to the 
decision module (see Figure 3.1). In a multibiometric system, fusion can be 
accomplished by utilizing the information available in any of these modules. 
Figure 2.10 indicates the various levels of fusion that are possible in the context 
of a biometric system. These levels can be broadly classified as (i) fusion prior 
to matching, and (ii) fusion after matching (Sanderson and Paliwal, 2002). This 
distinction is made because once the matcher (of a biometric system) is invoked, 
the amount of information available to the system drastically decreases. In this 
section we briefly introduce the various levels of fusion. In the next chapter, a 
more detailed description is provided. 

2.6.1 Fusion prior to matching 

Prior to matching, integration of information from multiple biometric sources 
can take place either at the sensor level or at the feature level. The raw data from 
the sensor(s) are combined in sensor level fusion (Iyengar et al., 1995). Sensor 
level fusion is applicable only if the multiple sources represent samples of the 
same biometric trait obtained either using a single sensor or different compatible 
sensors. For example, 2D face images of an individual obtained from several 
cameras can be combined to form a 3D model of the face. Another example 
of sensor level fusion is the mosaicing of multiple fingerprint impressions of a 
subject in order to construct a more elaborate fingerprint image (Jain and Ross, 
2002a; Moon et al., 2004). In sensor level fusion, the multiple cues must be 
compatible and the correspondences between points in the raw data must be 
either known in advance or reliably estimated. 

Feature level fusion refers to combining different feature sets extracted from 
multiple biometric sources. When the feature sets are homogeneous (e.g., mul­
tiple measurements of a person's hand geometry), a single resultant feature 
vector can be calculated as a weighted average of the individual feature vec­
tors. When the feature sets are non-homogeneous (e.g., features of different 
biometric modalities like face and hand geometry), we can concatenate them 
to form a single feature vector. Feature selection schemes are employed to re­
duce the dimensionality of the ensuing feature vector (Ross and Govindarajan, 
2005). Concatenation is not possible when the feature sets are incompatible 
(e.g., fingerprint minutiae and eigen-face coefficients). 
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Figure 2.10. Fusion can be accomplished at various levels in a biometric system. Most multi-
biometric systems fuse information at the match score level or the decision level. More recently 
researchers have begun to fuse information at the sensor and feature levels. In biometric systems 
operating in the identification mode, fusion can be done at the rank level (not shown here). FE: 
feature extraction module; MM: matching module; DM: decision-making module; FM: fusion 
module. 

2.6.2 Fusion after matching 
Schemes for integration of information after the classification/matcher stage 

can be divided into four categories: dynamic classifier selection, fusion at the 
decision level, fusion at the rank level and fusion at the match score level. A 
dynamic classifier selection scheme chooses the results of that biometric source 
which is most likely to give the correct decision for the specific input pattern 
(Woods et al., 1997). This is also known as the winner-take-all approach and 
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the module that performs this selection is known as an associative switch (Chen 
etal., 1997). 

When each biometric system outputs a match score indicating the proximity 
of the input data to a template, integration can be done at the match score level. 
This is also known as fusion at the measurement level or confidence level. 
Next to the feature vectors, the match scores output by biometric matchers 
contain the richest information about the input pattern. Also, it is relatively 
easy to access and combine the scores generated by the different matchers. 
Consequently, integration of information at the match score level is the most 
common approach in multibiometric systems. 

Integration of information at the abstract or decision level can take place 
when each biometric system independently makes a decision about the identity 
of the user (in an identification system) or determines if the claimed identity 
is true or not (in a verification system). Methods like majority voting (Lam 
and Suen, 1997), behavior knowledge space (Lam and Suen, 1995), weighted 
voting based on the Dempster-Shafer theory of evidence (Xu et al., 1992), 
AND/OR rules (Daugman, 2000), etc. can be used to consolidate the decisions 
rendered by individual systems. Since most commercial biometric systems 
provide access to only the final decision output by the system, fusion at the 
decision level is often the only viable option. 

When the output of each biometric system is a subset of possible matches 
(i.e., identities) sorted in decreasing order of confidence, the fusion can be done 
at the rank level. This is relevant in an identification system where a rank may be 
assigned to the top matching identities. Ho et al., 1994 describe three methods to 
combine the ranks assigned by different matchers. In the highest rank method, 
each possible identity is assigned the best (minimum) of all ranks computed by 
different systems. Ties are broken randomly to arrive at a strict ranking order 
and the final decision is made based on the consolidated ranks. The Borda 
count method uses the sum of the ranks assigned by the individual systems to a 
particular identity in order to calculate the fused rank. The logistic regression 
method is a generalization of the Borda count method where a weighted sum 
of the individual ranks is used. The weights are determined using logistic 
regression. 

2.7 Summary 
Information and data fusion is an active research area spanning numerous 

fields and there are several applications that rely on effective evidence reconcil­
iation schemes (Rao et al., 1996). In some apphcations, fusion may be viewed 
as ^. problem to be solved (e.g., robotics (Abidi and Gonzalez, 1992)) while in 
other applications, it may be viewed as a solution to a problem (e.g., forecasting 
(Clemen, 1989)). The role of multiple classifier systems in solving several pat­
tern recognition problems has long been established (for an early example, see 
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Dasarathy and Sheela, 1979). Multiple classifier systems exploit the comple­
mentary strengths of participating experts (viz., classifiers) in order to enhance 
the performance of a pattern recognition application. In the context of multi-
biometrics, these experts represent different biometric sources (e.g., multiple 
biometric sensors, multiple traits, etc.) providing information at multiple levels 
(e.g., score-level, decision-level, etc.). 

The design of a multibiometric system is governed by several different factors 
including the sources of information to be used, the acquisition and processing 
sequence to be adopted, the type of information to be combined and the fusion 
strategy to be employed. The development of robust human computer interfaces 
(HCIs) is necessary to permit the efficient acquisition of multibiometric data 
from individuals (see Sharma et al., 1998 and the references therein). A HCI 
that is easy to use can result in rapid user habituation and promote the acquisition 
of high quality biometric data. Indeed, the user is one of the key components in 
any biometric system and it is necessary that system designers take into account 
user-centric issues of the target population (such as age, gender and cultural 
considerations) whilst designing the HCI (Ashboum, 2003). Acquiring and 
processing multibiometric information in a sequential fashion (i.e., cascaded 
logic) helps curtail the time required for generating a decision. The use of 
multiple modalities in the cascaded mode facilitates database indexing, where 
one modality can be used to narrow down the number of possible identities 
before invoking the next. 

Information fusion in biometrics presents an elegant way to enhance the 
matching accuracy of a biometric system without resorting to non-biometric 
alternatives. Determining the sources of biometric information that would re­
sult in the best matching performance is not an easy task. Chang et al., 2005 
describe a multibiometric system that utilizes the 2D and 3D face images of 
a user for recognition. In their experiments involving 198 subjects, they ob­
serve that multi-sensor fusion of 2D and 3D images results in better recognition 
performance compared to multi-sample fusion of 2D images alone (fusion was 
accomplished at the match score level in both cases). However, they state that 
increasing the number of 2D images in multi-sample fusion may result in the 
same recognition performance as multi-sensor fusion. Furthermore, employ­
ing alternate fusion strategies at other levels (besides the match score level) 
can lead to different conclusions. In view of this, it is difficult to predict the 
optimal sources of biometric information relevant for a particular application 
based on recognition performance alone. Factors such as cost, throughput time, 
user convenience, scalability, etc. play a large role in selecting the sources of 
biometric information and adopting a particular fusion strategy. 



Chapter 3 

LEVELS OF FUSION IN BIOMETRICS 

3.1 Introduction 
One of the most fundamental issues in an information fusion system is to 

determine the type of information that should be consolidated by the fusion 
module. As indicated earlier, there is information compression as one pro­
gresses along the various modules of a biometric system (Figure 3.1). The raw 
data (e.g., image or video) is the richest in information content and subsequent 
processing (e.g., feature extraction) compresses the amount of information that 
is available to the system. It must be noted, however, that a feature-level rep­
resentation has certain advantages over the sensor-level (i.e, raw data-level) 
representation. The noise is suppressed in the former, and one may obtain an 
invariant representation of the biometric pattern under consideration. In a face 
recognition system, the raw data may correspond to a color image containing the 
frontal profile of an individual's face against a (possibly) cluttered background. 
The raw data not only contains the true biometric signal of an individual but 
is also corrupted by various types of noise (in this case the background clut­
ter, shadows, etc.). After face localization and feature extraction, the available 
information reduces to tens or hundreds of data bytes. The effect of noise is ex­
pected to decrease after feature extraction since the extraction process typically 
engages enhancement operations to suppress the inherent noise. However, the 
enhancement procedure in itself may add spurious information to the original 
raw data. Thus, there is an interplay between the amount of useful informa­
tion that is available at any stage in a biometric system and the degree of noise 
corrupting this information. 

Biometric systems that integrate information at an early stage of processing 
are believed to be more effective than those systems which perform integration at 
a later stage. So, for example, since the feature set contains richer information 
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Figure 3.1. The amount of information available for fusion gets compressed as one progresses 
along the various processing modules of a biometric system. The raw data represents the richest 
source of information, while the final decision (in a verification scenario) contains just a single 
bit of information. However, the raw data is corrupted by noise and may have large intra-class 
variability which is expected to be reduced in the subsequent modules of the system. 

about the input biometric pattern than the match score or the decision label, 
integration at this level is expected to provide better recognition results than the 
other two levels. However, in practice this is not always true since (i) the fusion 
process has to reckon with the presence of noise in constituent feature sets, and 
(ii) a new matching algorithm may be necessary to compare two fused feature 
sets. Developing efficient matching algorithms is often the most challenging 
aspect in the design of a biometric system and, thus, fusion at the sensor or 
feature levels introduces additional processing complexities. 

In this chapter we discuss various strategies for fusion at the sensor level, 
feature level, rank level and decision level. Since fusion at the match score 
level has been extensively studied in the literature and is the dominant level of 
fusion in biometric systems, we examine it in detail in Chapters 4 and 5. 

3.2 Sensor level fusion 
Sensor level fusion entails the consolidation of evidence presented by mul­

tiple sources of raw data before they are subjected to feature extraction. In 
the image processing literature this is referred to as image level or pixel level 
fusion (Blum and Liu, 2006). The phrase sensor level fusion is used in order to 
accommodate other types of raw data also such as sound, video, text, symbols, 
etc. 

Sensor level fusion can benefit multi-sample systems which capture multiple 
snapshots of the same biometric. For example, a small fingerprint sensor may 
capture two or more impressions of a person's fingerprint and create a compos­
ite fingerprint image that reveals more of the underlying ridge structure. This 
process, known as mosaicing, is particularly useful in sweep-sensors (Xia and 
O'Gorman, 2003) in which each image slice represents only a small portion 
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of the fingerprint and, hence, an appropriate stitching algorithm is required to 
integrate the various slices. Two successive image slices are registered by deter­
mining the translational offset relating them. The sensor interface is designed 
in such a way as to avoid rotational offsets between the slices thus reducing the 
complexity associated with the image registration procedure. 

Jain and Ross, 2002a discuss a mosaicing scheme that creates a composite 
fingerprint image from the evidence presented by multiple dab prints. The al­
gorithm uses the minutiae points to first approximately register the two images 
using a simple affine transformation. The Iterative Closest Point (ICP) algo­
rithm is then used to register the ridge information corresponding to the two 
images after applying a low-pass filter to the individual images and normal­
izing their histograms. The normalization ensures that the pixel intensities of 
the individual dab prints are comparable. Blending is accomplished by merely 
concatenating the two registered images (Figure 3.2). The performance using 
the mosaiced image templates was shown to exceed that of the individual dab 
print templates. 

Ratha et al., 1998 describe a mosaicing scheme to integrate multiple snap­
shots of a fingerprint as the user rolls the finger on the surface of the sensor. Thus, 
a specific temporal order is imposed on the image frames when constructing the 
composite image. The authors investigate five different blending algorithms to 
construct a composite mosaiced image from the individual grayscale images. 
They evaluate the efficacy of these five schemes by observing the size of the 
mosaiced print and its quality (in terms of the number of valid minutiae points 
detected). Other approaches to fingerprint mosaicing have been discussed by 
Moon et al., 2004, Choi et al., 2005 and Zhang et al., 2005. Note that image 
mosaicing may not be possible when the component images are captured using 
different types of sensors. 

Mosaicing has also been attempted by researchers in face recognition where 
multiple 2D images representing different poses are stitched to generate a sin­
gle image. Yang et al., 2005 propose an algorithm to create panoramic face 
mosaics. Their acquisition system consists of five cameras that simultaneously 
obtain five different views of a subject's face. In order to determine the corre­
sponding points in multiple face views, the authors place ten colored markers 
on the face. Based on these control points, their algorithm uses a sequence 
of fast linear transformations on component images to generate a face mosaic. 
Finally, a local smoothing process is carried out to smooth the mosaiced im­
age. Two different schemes were used to represent the panoramic image: one 
in the spatial domain and the other in the frequency domain. The frequency 
domain representation resulted in an identification accuracy of 97.46% while 
the spatial domain representation provided 93.21% accuracy on a database of 
12 individuals. 
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(a) (b) 

(c) (d) 

Figure 3.2. Constructing a fingerprint mosaic from multiple dab prints using the technique 
proposed by Jain and Ross, 2002a. (a) and (b) are dab impressions obtained after image segmen­
tation and histogram normalization. The result of mosaicing is shown in (c). The minutiae points 
extracted from the composite print can be seen in (d). Typically, a larger number of minutiae 
and more ridge details are available in the composite print (compared to individual dab prints) 
thus enhancing the accuracy of a fingerprint matcher. 
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Liu and Chen, 2003 propose a face mosaicing technique that uses a statistical 
model to represent the mosaic. Given a sequence of face images captured 
under an orthographic camera model, each frame is unwrapped onto a certain 
portion of the surface of a sphere via a spherical projection. A minimization 
procedure using the Levenberg-Marquardt algorithm is employed to optimize 
the distance between an unwrapped image and the sphere. The representational 
(statistical) model comprises of a mean image and a number of eigen-images. 
The novelty of this technique is (a) the use of spherical projection, as opposed to 
cylindrical projection, which works better when there is head motion in both the 
horizontal and vertical directions, and (b) the computation of a representational 
model using both the mean image and the eigen-images rather than a single 
template image. Although the authors state that this method can be used for 
face recognition, no experimental results have been presented in the paper. In 
Liu and Chen, 2005, the authors propose another algorithm in which the human 
head is approximated with a 3D ellipsoidal model. The face, at a certain pose, is 
viewed as a 2D projection of this 3D ellipsoid. All 2D face images of a subject 
are projected onto this ellipsoid via geometrical mapping to form a texture map 
which is represented by an array of local patches. Matching is accomplished 
by adopting a probabilistic model to compute the distance of patches from an 
input face image. The authors report an identification accuracy of 90% on the 
CMU PIE database (Sim et al., 2003). 

It is also possible to combine the 2D texture of a person's face with the cor­
responding 3D scan (i.e., the range image) in order to create a 3D texture. Two 
such 3D surfaces can be compared by first aligning them using landmark points, 
such as automatically detected high curvature points, and then comparing the 
texture associated with local patches. The local patches are usually defined 
using triangular meshes (Figure 3.3). Hsu, 2002 describes a face modeling 
algorithm that uses the 2D and 3D images of a person's face obtained during 
enrollment to modify a generic 3D face model and derive a user-specific 3D 
model. The generic 3D model is based on Waters' animation model (Parke and 
Waters, 1996) and contains 256 vertices and 441 triangular facets (for one-half 
of the face) that define various facial attributes. During the enrollment stage, 
the 2D and 3D images of a person's face are acquired using a Minolta Vivid 700 
digitizer that generates a registered 200x200 range map and a 400x400 color 
image. A global alignment procedure is employed to approximately align the 
facial measurements of the user with the generic 3D model. A local alignment 
scheme is then invoked that perturbs features such as the eyes, nose, mouth, 
chin and face boundary of the generic 3D model so that they fit the actual facial 
measurements of the individual. Next, a combination of displacement propa­
gation and 2.5D active contours is used to smooth the face model and to refine 
the local features present in the model resulting in a user-specific 3D repre­
sentation of the face. The availability of this model permits the generation of 
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new (previously unseen) 2D images of a person's face (e.g., at different poses, 
illumination, head-tilt, etc.) without actually employing a scanner to capture 
such images. Hsu, 2002 uses this approach to compare 2D images of a person's 
face acquired during authentication with the user-specific 3D model residing in 
the template database. 

(a) (b) 

(c) (d) 

Figure 3.3. Constructing a 3D face texture by combining the evidence presented by a 2D texture 
image and a 3D range image, (a) The 2D face texture of a person, (b) The corresponding 3D 
range (depth) image, (c) The 3D surface after mapping the 2D texture information from (a), (d) 
The local texture information available in the triangular meshes along with the high curvature 
points that define the shape of the face can be used for comparing two such face surfaces. 

3 3 Feature level fusion 
Feature level fusion involves consolidating the evidence presented by two 

biometric feature sets of the same individual. If the two feature sets originate 
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from the same feature extraction algorithm (thus, a single modality is assumed) 
then feature level fusion can be used for template update or template improve­
ment as discussed below. 

1 Template update: The template in the database can be updated based on the 
evidence presented by the current feature set in order to reflect (possibly) 
permanent changes in a person's biometric. Hand geometry systems use 
this process to update the geometric measurements stored in the database 
in order to account for changes in an individual's hand over a period of 
time. A simple scheme would be to take the average of the two feature 
vectors corresponding to the two instances of the biometric signal and use 
the average feature vector as the new template (Figure 3.4). 

2 Template improvement: In the case of fingerprints, the minutiae informa­
tion available in two impressions can be combined by appropriately aligning 
the two prints and then removing duplicate minutia thereby generating a 
larger minutia set. This process known as template improvement can also 
be used to remove spurious minutiae points that may be present in a feature 
set. While template update is used to accommodate temporal changes in a 
person's biometric, the purpose of template improvement is to increase the 
number of features {and decrease the number of spurious features) whilst 
retaining its integrity. 
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Figure 3.4. A template update procedure may be viewed as a feature fusion scheme. In tliis 
example, the nine-dimensional feature set of a user ('Feature Set 1') is updated based on the 
evidence presented by the current feature set ('Feature Set 2'), via the averaging scheme. 

Several template improvement algorithms have been discussed in the liter­
ature for fingerprints. Jiang and Ser, 2002 propose a template improvement 
scheme where a reliability measure is associated with each extracted minutia 
point. This reliability measure is updated as minutiae evidence from newly ac­
quired impressions is made available. The parameters of a minutia point (i.e., 
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its x-y location and orientation) are updated via a weighted average scheme; 
even the 'type' of the minutiae (i.e., ridge-ending or ridge-bifurcation) is altered 
if necessary. Template improvement is applicable only when the new finger­
print impression is accurately aligned with the stored one. The authors use the 
match score to determine if two impressions are accurately aligned. During 
the verification stage, only those minutia points whose reliability measure is 
above a certain threshold are used in the matching process. The authors show 
that their scheme results in (i) the elimination of spurious minutiae points, (ii) 
the addition of missed minutiae points, (iii) the relabeling of incorrect minutiae 
types and, consequently, (iv) a general improvement in matching performance. 
Other algorithms for minutiae template improvement have been discussed in 
Moon et al., 2004 and Yau et al., 2000. 

How does one consolidate feature sets originating from different algorithms 
and modalities? Feature level fusion is difficult to achieve in such cases because 
of the following reasons: 

1 The relationship between the feature spaces of different biometric systems 
may not be known. 

2 The feature sets of multiple modalities may be incompatible. For exam­
ple, the minutiae set of fingerprints and the eigen-coefficients of face are 
irreconcilable. One is a variable length feature set (i.e., it varies across im­
ages) whose individual values parameterize a minutia point; the other is a 
fixed length feature set (i.e., all images are represented by a fixed number 
of eigen-coefficients) whose individual values are scalar entities. 

3 If the two feature sets are fixed length feature vectors, then one could con­
sider augmenting them to generate a new feature set. However, concatenat­
ing two feature vectors might lead to the curse-of-dimensionality problem 
(Jain and Chandrasekaran, 1982) where increasing the number of features 
might actually degrade the system performance especially in the presence of 
small number of training samples. Although the curse-of-dimensionality is 
a well known problem in pattern recognition, it is particularly pronounced 
in biometric applications because of the time, effort and cost required to 
collect large amounts of biometric (training) data. 

4 Most commercial biometric systems do not provide access to the feature sets 
used in their products. Hence, very few biometric researchers have focused 
on integration at the feature level and most of them generally prefer fusion 
schemes that use match scores or decision labels. 

If the length of each of the two feature vectors to be consolidated is fixed 
across all users, then a feature concatenation scheme followed by a dimension­
ality reduction procedure may be adopted. Let X = {xi,X2,... ^Xm} and 
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Y = {yi, 2̂? • • • 5 yn} denote two feature vectors {X G R^ and Y G R^) rep­
resenting the information extracted from two different biometric sources. The 
objective is to fuse these two feature sets in order to yield a new feature vector, 
Z, that would better represent an individual. The vector Z of dimensionality k, 
k < {m + n), can be generated by first augmenting vectors X and Y, and then 
performing feature selection or feature transformation on the resultant feature 
vector in order to reduce its dimensionality. The key stages of such an approach 
are described below (also see Figure 3.5). 

Feature Normalization: The individual feature values of vectors X — {xi,X2, 
. . . , Xm} and y = {yi ^y2^.. ^ ^yn} may exhibit significant differences in their 
range as well as form (i.e., distribution). Augmenting such diverse feature 
values will not be appropriate in many cases. For example, if the x^'s are in the 
range [0,100] while the yi's are in the range [0,1], then the distance between 
two augmented feature vectors will be more sensitive to the x^'s than the y^'s. 
The goal of feature normalization is to modify the location (mean) and scale 
(variance) of the features values via a transformation function in order to map 
them into a common domain. Adopting an appropriate normalization scheme 
also helps address the problem of outliers in feature values. While a variety of 
normalization schemes can be used, two simple schemes are discussed here: 
the min-max and median normalization schemes. 

Let X and x' denote a feature value before and after normalization, respec­
tively. The min-max technique computes x' as 

max(Fa,)-min(F^)' 

where Fx is the function which generates x, and min(F^) and max{Fx) repre­
sent the minimum and maximum of all possible x values that will be observed, 
respectively. The min-max technique is effective when the minimum and the 
maximum values of the component feature values are known beforehand. In 
cases where such information is not available, an estimate of these parameters 
has to be obtained from the available set of training data. The estimate may be 
affected by the presence of outliers in the training data and this makes min-max 
normalization sensitive to outliers. The median normalization scheme, on the 
other hand, is relatively robust to the presence of noise in the training data. In 
this case, x^ is computed as 

, X — median{Fx) 
median{\ (x — median{Fx)) |) 

The denominator is known as the Median Absolute Deviation (MAD) and is an 
estimate of the scale parameter of the feature value. Although, this normaliza­
tion scheme is relatively insensitive to outliers, it has a low efficiency compared 
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to the mean and standard deviation estimators (see Chapter 4). Normahzing the 
feature values via any of these techniques results in modified feature vectors 
X' = {x[,X2, " 'X'm} ^^d ^ ' — {2/1? 2/27 ••• ^nl- Feature normalization may 
not be necessary in cases where the feature values pertaining to multiple sources 
are already comparable. 

Feature Selection or Transformation: Augmenting the two feature vectors, 
X'and y ' , results in a new feature vector, Z' = {x'i^x'2^ • • • ^m ^yi^y2^ • • • Un}^ 
Z' G K^^^. The curse-of-dimensionality dictates that the augmented vector 
of dimensionality (m + n) need not necessarily result in an improved match­
ing performance compared to that obtained by X ' and Y' alone. The feature 
selection process is a dimensionality reduction scheme that entails choosing a 
minimal feature set of size k,k < {m + n), such that a criterion (objective) 
function applied to the training set of feature vectors is optimized. There are 
several feature selection algorithms in the literature, and any one of these could 
be used to reduce the dimensionality of the feature set Z\ Examples include 
sequential forward selection (SFS), sequential backward selection (SBS), se­
quential forward floating search (SFFS), sequential backward floating search 
(SBFS), "plus / take away r" and branch-and-bound search (see Pudil et al., 
1994 and Jain and Zongker, 1997 for details). Feature selection techniques rely 
on an appropriately formulated criterion function to elicit the optimal subset of 
features from a larger feature set. In the case of a biometric system, this crite­
rion function could be the Equal Error Rate (EER); the d-prime measure; the 
area of overlap between genuine and impostor training scores; or the average 
GAR at pre-determined FAR values in the ROC/DET curves corresponding to 
the training set (see Ross and Govindarajan, 2005). 

Dimensionality reduction may also be accomplished using feature transfor­
mation methods where the vector Z ' is subjected to a linear or a non-linear 
mapping that projects it to a lower dimensional subspace. Examples of such 
transformations include the use of principal component analysis (PCA), inde­
pendent component analysis (ICA), multidimensional scaling (MDS), Kohonen 
Maps and neural networks (Jain et al., 2000a). The application of a feature 
selection or feature transformation procedure results in a new feature vector 
Z = {zi^Z2^... Zk} which can now be used to represent the identity of an 
individual. 

Examples of Feature Level Fusion: Ross and Govindarajan, 2005 discuss 
feature level fusion as applied to three different scenarios: (a) multi-algorithm, 
where two different face recognition algorithms based on Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) are combined; (b) 
multi-sensor, where the three different color channels of a face image are inde­
pendently subjected to LDA and then combined; and (c) multimodal, where the 
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face and hand geometry feature vectors are combined. The general procedure 
adopted by Ross and Govindarajan, 2005 is summarized below. 

1 Let {Xi, Yi} and {Xj^ Yj} be the feature vectors obtained at two different 
time instances i and j . Here, X and Y represent the feature vectors derived 
from two different information sources. The corresponding fused feature 
vectors may be denoted as Zi and Zj, respectively. 

2 Let sx and sy be the normalized match scores generated by comparing Xi 
with Xj and Yi with Yj, respectively, and let smatch = {^x + •sy)/2 be 
the fused match score obtained using the simple sum rule. 

3 A pair of fused feature vectors, Zi and Zj, are then compared using two dif­
ferent distance measures: the Euclidean distance {Seuc) and the Thresholded 
Absolute Distance or TAD {stad)- Thus, 

k 

r=l 

k 

Stad = X^^(l^i,r - ^ j , r U ) . (3.4) 

Here, I{u, t) = l/\fu> t (and 0, otherwise), t is a pre-specified threshold, 
and k is the dimensionality of the fused feature vector. The thresholded 
absolute distance measure determines the number of normalized feature 
values that differ by a magnitude greater than t. The s^uc and Stad values 
are consolidated into one feature level score, Sfeat^ via the simple sum rule 
(Figure 3.5). This retains information both at the match score level (Smatch) 
as well as the feature level (sfeat)-

4 Finally, the simple sum rule is used to combine s match and Sfeat in order to 
obtain the final score stot (Figure 3.6). 

The authors compare the matching performances obtained using s match and 
Stot in all three scenarios. Results indicate that feature level fusion is advanta­
geous in some cases. The feature selection scheme ensures that redundant or 
correlated feature values are detected and removed before invoking the matcher. 
This is probably one of the key benefits of performing fusion at the feature level 
(Kumar and Zhang, 2005a). Therefore, it is important that vendors of biometric 
systems grant access to feature level information to permit the development of 
effective fusion strategies. 

Chibelushi et al., 1997 discuss a scheme to combine the features associated 
with the voice (audio) and lip shape (video) of an individual in an identifica­
tion system. 14 mel-frequency cepstral coefficients (MFCC) and 12 geometric 
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Figure 3.5. 
fusion. 

The procedure adopted by Ross and Govindarajan, 2005 to perform feature level 

features are extracted from the audio and video streams to represent the voice 
and shape of the Ups, respectively. The PCA and LDA transformations are 
used to reduce the dimensionahty of the concatenated feature set. The authors 
demonstrate that the use of feature level fusion in their system is equivalent to 
increasing the signal-to-noise ratio (SNR) of the audio signal thereby justifying 
the use of lip shape in the fusion module. Other examples of feature level fusion 
can be found in Son and Lee, 2005 (face and iris) and Kumar et al., 2003 (hand 
geometry and palmprint). 

3.4 Rank level fusion 
When a biometric system operates in the identification mode, the output of 

the system can be viewed as a ranking of the enrolled identities. In this case, the 
output indicates the set of possible matching identities sorted in decreasing order 
of confidence. The goal of rank level fusion schemes is to consolidate the ranks 
output by the individual biometric subsystems in order to derive a consensus 
rank for each identity. Ranks provide more insight into the decision-making 
process of the matcher compared to just the identity of the best match, but they 
reveal less information than match scores. However, unlike match scores, the 
rankings output by multiple biometric systems are comparable. As a result, no 
normalization is needed and this makes the rank level fusion schemes simpler 
to implement compared to the score level fusion techniques. 

Let us assume that there are M users enrolled in the database and let the 
number of matchers be R. Let Vj^k be the rank assigned to user k by the j ^ ^ 
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Figure 3.6. The flow of information when data from the feature level and match score level are 
combined in a multibiometric system (Ross and Govindarajan, 2005). 

matcher, j = 1 , . . . , i? and k — 1 , . . . , M. Let s/. be a statistic computed 
for user k such that the user with the lowest value of s is assigned the highest 
consensus (or reordered) rank. Ho et al., 1994 describe the following three 
methods to compute the statistic s. 

Highest Rank Method: In the highest rank method, each user is assigned the 
highest rank (minimum r value) as computed by different matchers, i.e., the 
statistic for user k is 

Sk = mm Tj^k- (3.5) 

Ties are broken randomly to arrive at a strict ranking order. This method 
is useful only when the number of users is large compared to the number of 
matchers, which is usually the case in biometric identification systems. If this 
condition is not satisfied, most of the users will have ties rendering the final 
ranking uninformative. An advantage of the highest rank method is that it 
can utilize the strength of each matcher effectively. Even if only one matcher 
assigns a high rank to the correct user, it is still very likely that the correct user 
will receive a high rank after reordering. 
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Borda Count Method: The Borda count method uses the sum of the ranks 
assigned by the individual matchers to calculate the value of s, i.e., the statistic 
for user k is 

R 

Sk = Yl^J^^' (3.6) 

The magnitude of the Borda count for each user is a measure of the degree 
of agreement among the different matchers on whether the input belongs to that 
user. The Borda count method assumes that the ranks assigned to the users by 
the matchers are statistically independent and all the matchers perform equally 
well. 

Logistic Regression Method: The logistic regression method is a generaliza­
tion of the Borda count method where a weighted sum of the individual ranks 
is calculated, i.e., the statistic for user k is 

R 

Sk = Xl'^j^j,/c- (3.7) 
j=i 

The weight, Wj, to be assigned to the j ^ ^ matcher, j = 1 , . . . , i?, is deter­
mined by logistic regression (Agresti, 1996). The logistic regression method 
is useful when the different biometric matchers have significant differences in 
their accuracies. However, this method requires a training phase to determine 
the weights. 

Figure 3.7 presents a simple example to illustrate the three rank level fusion 
techniques proposed by Ho et al., 1994. Two face recognition algorithms rank 
the four users in the database based on their similarity with the input face im­
age. The fused score column in Figure 3.7 represents the value of ŝ .̂ When 
the highest rank method is used, we find that there is a tie for rank 1 between 
users "Alice" and "Bob". In this example, the reordered ranks were obtained 
by breaking the ties randomly. Since the highest rank and Borda count methods 
assume that both face matchers perform equally well, the reordered ranks tend 
to be a mixture of the ranks assigned individually by the two matchers. On the 
other hand, the logistic regression method assigns a higher weight to the ranks 
provided by the more accurate matcher. As a result, the reordered ranks can be 
expected to be similar to the ones provided by the matcher with a higher accu­
racy. In the example shown in Figure 3.7, the matcher 1 is more accurate than 
matcher 2. Therefore, a weight of 0.8 is assigned to it and due to this significant 
difference in the weights, the reordered ranks in the logistic regression case are 
exactly the same as the ranks assigned by the matcher 1. 
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Figure 3.7. An illustration of rank level fusion as performed by the highest rank method, Borda 
count and logistic regression. In this example, the three schemes assign different consensus 
ranks to the individual identities. 

3.5 Decision level fusion 
In a multibiometric system, fusion is carried out at the abstract or decision 

level when only the decisions output by the individual biometric matchers are 
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available. Many commercial off-the-shelf (COTS) biometric matchers provide 
access only to the final recognition decision. When such COTS matchers are 
used to build a multibiometric system, only decision level fusion is feasible. 
Methods proposed in the literature for decision level fusion include "AND" 
and "OR" rules (Daugman, 2000), majority voting (Lam and Suen, 1997), 
weighted majority voting (Kuncheva, 2004), Bayesian decision fusion (Xu et al., 
1992), the Dempster-Shafer theory of evidence (Xu et al., 1992) and behavior 
knowledge space (Huang and Suen, 1995). 

Let M denote the number of possible decisions (also known as class labels 
or simply classes in the pattern recognition literature; these three terms are used 
interchangeably in the following discussion) in a biometric system. Also, let 
cji, u;2, • • • ^M indicate the classes associated with each of these decisions. In 
the verification mode, the decision rendered by a biometric matcher is either a 
"genuine user" or an "impostor" (M = 2). If the similarity between the input 
biometric sample and the template of the claimed identity is greater than a fixed 
threshold, the identity claim is declared as "genuine". A biometric matcher 
operating in the identification mode decides the identity of the user whose 
template best matches the given input (M is the number of users enrolled in 
the system). In some cases, a biometric identification system may also output 
a "reject" decision indicating that no stored template is sufficiently similar to 
the input. 

"AND" and "OR" Rules: In a multibiometric verification system, the simplest 
method of combining decisions output by the different matchers is to use the 
"AND" and "OR" rules. The output of the "AND" rule is a "match" only 
when all the biometric matchers agree that the input sample matches with the 
template. On the contrary, the "OR" rule outputs a "match" decision as long as 
at least one matcher decides that the input sample matches with the template. 
The limitation of these two rules is their tendency to result in extreme operating 
points. When the "AND" rule is applied, the False Accept Rate (FAR) of the 
multibiometric system is extremely low (lower than the FAR of the individual 
matchers) while the False Reject Rate (FRR) is high (greater than the FRR 
of the individual matchers). Similarly, the "OR" rule leads to higher FAR 
and lower FRR than the individual matchers. When one biometric matcher 
has a substantially higher equal error rate compared to the other matcher, the 
combination of the two matchers using "AND" and "OR" rules may actually 
degrade the overall performance (Daugman, 2000). Due to this phenomenon, 
the "AND" and "OR" rules are rarely used in practical multibiometric systems. 

Majority Voting: The most common approach for decision level fusion is 
majority voting where the input biometric sample is assigned to that identity on 
which a majority of the matchers agree. If there are R biometric matchers, the 
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input sample is assigned an identity when at least k of the matchers agree on 
that identity, where 

r ^ + 1 if i? is even, 
k=l (3.8) 

I "^2^ Otherwise. 
When none of the identities is supported by k matchers, a "reject" decision is 

output by the system. The example shown in Figure 3.8 is a simple illustration 
of the majority voting scheme, where three face recognition algorithms are used. 
In the identification mode, two of the three matchers identify the user as "Bob". 
Therefore, the final identity decision after fusion is also "Bob". Similarly, in 
the verification mode, since two of the three matchers decide that the input face 
image matches with the template of the claimed identity, the final decision after 
fusion is a "match". 

Majority voting assumes that all the matchers perform equally well. The 
advantages of majority voting are: (i) no apriori knowledge about the matchers 
is needed, and (ii) no training is required to come up with the final decision. A 
theoretical analysis of the majority voting fusion scheme was done by Kuncheva 
et al., 2003 who established limits on the accuracy of the majority vote rule based 
on the number of matchers, the individual accuracy of each matcher and the 
pairwise dependence between the matchers. 

Weighted Majority Voting: When the matchers used in a multibiometric sys­
tem are not of similar recognition accuracy (i.e, imbalanced matchers/classifiers), 
it is reasonable to assign higher weights to the decisions made by the more ac­
curate matchers. In order to facilitate this weighting, the labels output by the 
individual matchers are converted into degrees of support for the M classes as 
follows. 

_ J 1, if output of the j^^ matcher is class a;/̂ , 
^ '̂̂  ~ \ 0, otherwise, ^^'^^ 

where j = 1 , . . . , i? and k = 1 , . . . , M. The discriminant function^ for class 
ujk computed using weighted voting is 

R 

9k = ^'^jSj.k^ (3.10) 

where Wj is the weight assigned to the j ^ ^ matcher. A test sample is assigned 
to the class with the highest score (value of discriminant function). 

Bayesian Decision Fusion: The Bayesian decision fusion scheme relies on 
transforming the discrete decision labels output by the individual matchers 
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Figure 3.8. Flow of information when decisions provided by multiple biometric matchers are 
combined using the majority vote fusion scheme. Here "ID" and "Ver" represent the identification 
and verification modes of operation, respectively. For the verification mode, the claimed identity 
is Bob. 

into continuous probability values. The first step in the transformation is the 
generation of the confusion matrix for each matcher by applying the matcher to 
a training set D. Let CM^ be the M x M confusion matrix for the j ^ ^ matcher. 
The (fc, r)th element of the matrix CM^ (denoted as cml, )̂ is the number of 
instances in the training data set v^here a pattern whose true class label is a; ŷ  is 
assigned to the class Ur by the f^ matcher. Let the total number of data instances 
in D be Â  and the number of elements that belong to class cj^ be A^̂ . Let Cj be the 
class label assigned to the test sample by the j ^ ^ matcher. The value cml, c / ^^ 
can be considered as an estimate of the conditional probability P (cj \ujk) and 
Nk/N can be treated as an estimate of the prior probability of class a;^. Given 
the vector of decisions made by R matchers c— [c i , . . . , CB\, we are interested 
in calculating the posterior probability of class ujk. i-e., P {(jOk\c). According 
to the Bayes rule, 
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P{uju\c) = 
P {c\u)k) PjuJk) 

P{x) ' 
(3.11) 

where fc = 1 , . . . , M. The denominator in Equation 3.11 is independent of the 
class cjk aî d can be ignored for the decision making purpose. Therefore, the 
discriminant function for class cvk is 

9k = P{c\u;k)P{uJk)' (3.12) 

The Bayes decision fusion technique chooses that class which has the largest 
value of discriminant function calculated using equation 3.12. To simplify the 
computation of P (c|a;/.), one can assume conditional independence between 
the different matchers, i.e., the matchers are mutually independent given a 
decision. Under this assumption, the decision rule is known as naive Bayes 
rule and P {c\u;k) is computed as 

R 

P{c\uk) = P{cu...,CR\u;k) = Y[P{cj\u;k). (3.13) 

The accuracy of the naive Bayes decision fusion rule has been found to 
be fairly robust even when the matchers are not independent (Domingos and 
Pazzani, 1997). The naive Bayes combination rule can be illustrated using 
the following example. Let Alice, Bob, Chariie be three users enrolled in a 
face-based biometric system. Let two face recognition algorithms be deployed 
for identity determination. Suppose that 300 face images (100 from each user) 
are available to train the fusion algorithm in the multibiometric system. These 
images are presented to the two face matchers and the following two 3 x 3 
confusion matrices, one for each matcher, are obtained. 

CM^ -
65 9 26 
50 37 13 
32 32 36 

and 

CM^ = 
49 21 30 
10 66 24 
10 19 71 

Note that the (/c, r)th element of the matrix CM^ denotes the number of face 
images from user cuk that are identified as user cUr by the j^^ matcher. For 
example, matcher 1 correctly identifies only 65 out of the 100 face images from 
Alice. The remaining 35 images were wrongly identified as either Bob (9 out 
of 100) or Charlie (26 out of 100). Similarly, matcher 2 correctly identifies 49 



78 HANDBOOK OF MULTIBIOMETRICS 

out of the 100 face images from Alice, while the remaining 51 images were 
wrongly identified as either Bob (21 out of 100) or Charlie (30 out of 100). 

Assume that for a test image, the outputs of the two matchers are ci = Alice 
and C2 =Bob. The following conditional probabilities P{cj\u;k) can be esti­
mated from the observed confusion matrices: P(ci = Alice|c<; = Alice) = 
65/100, P(c2 - Bob|cj = Alice) = 21/100, P(ci = Alice|cc; = Bob) -
50/100, P(c2 - Bob|a; = Bob) = 66/100, P(ci = Alice|cc; = Charlie) = 
32/100 and P(c2 = Boh\u; = Charlie) = 19/100. Since each user had 100 
face images in the training set, the prior probability for each user is 100/300. 
Therefore, the discriminant functions for the three users based on equations 
3.12 and 3.13 are 

/ 65 21 \ 100 
Qf.,• = X X = 0 . 0 5 , 
y Alice ^^QQ ^ Q Q ^ 3QQ 

/ 5 0 66 \ 100 ^^^ 
'^^' = VT^^IooJ^30o^°-^^' 

/ 32 19 \ 100 ^ _ ^ _ , 
gCharlie = X X = 0.02. (3.14) 
yctiariie ^ 100 100/ 300 

Since gsob is the highest of the three values, the naive Bayes fusion rule will 
assign the identity Bob to the test face image. 

Now, let us analyze the naive Bayes decision rule for the special case of a bio-
metric verification system where each matcher individually decides whether the 
user's identity claim is "genuine" or the user is an "impostor". Let Cj be the deci­
sion of the j^^ matcher for an input pattern, where Cj 6 {genuine^ impostor}. 
By changing the matching threshold Xj for the j^^ biometric matcher, it is pos­
sible to vary the false accept {P{cj — genuine\uj = impostor)) and false 
reject {P{cj = impostor \u; = genuine)) rates of that specific matcher. How­
ever, in a multibiometric system we are interested only in minimizing the global 
error rate (the overall error rate of the multibiometric system after the fusion of 
decisions from the individual biometric matchers). Therefore, we must find an 
optimal solution for the local thresholds {Ai , . . . , Â }̂ such that the global error 
rate is minimized. Veeramachaneni et al., 2005 propose an evolutionary algo­
rithm, called the particle swarm optimization, to solve for the local thresholds 
in a multibiometric system. 

Dempster-Shafer Theory of Evidence: The Dempster-Shafer theory of evi­
dence is based on the concept of assigning degrees of belief for uncertain events. 
Note that the degree of belief for an event is different from the probability of the 
event. This subtle difference is explained in the following example. Suppose 
we know that a biometric matcher has a reliability of 0.95, i.e., the output of the 
matcher is reliable 95% of the time and unreliable 5% of the time. Suppose that 
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the matcher outputs a "match" decision. We can assign a 0.95 degree of behef 
to the "match" decision and a zero degree of belief to the "non-match" decision. 
The zero beUef does not rule out the "non-match" decision completely, unlike 
a zero probability. Instead, the zero belief indicates that there is no reason to 
believe that the input does not match successfully against the template. Hence, 
we can view belief theory as a generalization of probability theory. Indeed, 
belief functions are more flexible than probabilities when our knowledge about 
the problem is incomplete. 

Rogova, 1994 and Kuncheva et al., 2001 propose the following methodology 
to compute the belief functions and to accumulate the belief functions according 
to the Dempster's rule. For a given input pattern, the decisions made by R 
classifiers for a M-class problem is represented using a i? x M matrix known 
as a decision profile {DP) (Kuncheva et al., 2001) which is given by. 

DP 

51,1 • 

^j,l • 

SR^l . 

•• Si^k • 

Sj^k 

' • SR^k ' 

• • Si^M 

• • Sj^M 

• • SR,M 

where Sj^k is the degree of support provided by the j ^ ^ matcher to the k^^ class. 
At the decision level, the degree of support is expressed as 

^j,k 
^ r 1, if 

I 0, ot 
output of the j 

otherwise. 

th matcher is class cuk^ 
(3.15) 

where j = 1,.., ,R and A; = 1 , . . . , M. The decision template (DT^) of each 
class (jJk is the average decision profile for all the training instances that belong 
to the class cvk- When the degrees of support defined in Equation 3.15 are used, 
one can easily see that the elements of the decision template DT^ are related 
to the elements of the confusion matrices of the R matchers in the following 
manner. 

(3.16) 

where Â ^ is the number of instances in the training set D that belong to class CJ/̂ , 
j = 1 , . . . , i^ and k^r = 1 , . . . , M. For a given test pattern X^, the decision 
profile DP^ is computed after the decisions of the R matchers are obtained. 
The similarity between DP^ and the decision templates for the various classes 
is calculated as follows. 
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*i,fc = 

1 + \DT^ DP^W)' 

Ef=,((i + (l DTJ 

(3.17) 

where DTj^ represents the j * ^ row of DT^ belonging to class cj^, DPj rep­
resents the j ^ ^ row of DP^ belonging to the test pattern X^ and |{.|| de­
notes the matrix norm. For every class k = 1 , . . . , M and for every matcher 
j = 1 , . . . , i?, we can compute the degree of belief as 

$ 
bj,k = 

j,k n M 
( l - ^ i , r ) 

1 _ $ 'j,k 
JM 

KLl^r^k (1 - ^j,r 
(3.18) 

The accumulated degree of belief for each class k = 1 , . . . , M based on the 
outputs of R matchers is then obtained using the Dempster's rule as 

R 

9k n î *̂  (3.19) 
i = i 

The test pattern X* is assigned to the class having the highest degree of belief 
gk-

To get a better understanding of the Dempster-Shafer fusion rule, let us 
consider the same example that was used for the illustration of the naive Bayes 
decision fusion technique. From the confusion matrices CM^ and CM'^ used 
in that example, we can derive the following decision templates for the three 
classes using Equation 3.16. Note that the number of training instances is 100 
for each of the three classes. 

0.65 0.09 0.26 
0.49 0.21 0.30 

0.50 0.37 0.13 
0.10 0.66 0.24 

and 

DT^ = 
0.32 0.32 0.36 
0.10 0.19 0.71 

Suppose that for the test image, the outputs of the two matchers are c i = Alice 
and C2 = Bob. This results in the following decision profile DP*. 

DP* = 1 0 0 
0 1 0 
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Using Equation 3.17, we can compute the matrix $ representing the similarity 
between the decision profile DP^ and the decision templates DT^, DT'^ and 

Applying Equation 3.20 to Equation 3.18, we get 

0.39 0.33 0.28 
0.28 0.47 0.25 

(3.20) 

6 - (3.21) 0.23 0.17 0.13 
0.13 0.34 0.11 

The discriminant functions for the three classes are obtained by substituting 
Equation 3.21 in Equation 3.19, which gives 

9Aiice = 0.23x0.13 = 0.03 
g^^f^ = 0.17 X 0.34 - 0.06 

gCharHe = 0 . 1 3 x 0 . 1 1 = 0 . 0 1 . (3.22) 

Since the user Bob has the highest belief value among the three users, the 
Dempster-Shafer fusion rule assigns Bob's identity to the test face image. 

Behavior Knowledge Space: In the behavior-knowledge space (BKS) method, 
a lookup table that maps the decisions of the multiple matchers to a single de­
cision is developed using the training data. Let Cj be the decision of the j^^ 
matcher, j = 1 , . . . , i?. The vector of matcher decisions, c= [c i , . . . , Cî ], de­
fines a point in the iJ-dimensional discrete space called the behavior-knowledge 
space. Each point in this space can be considered to be an index to a bin. For 
each bin, the decision with the highest proportion of samples is estimated dur­
ing the training phase. During the verification phase, the given test pattern 
X^ is presented to the individual biometric matchers and the decision vector 
c^ = [c^, . . . , c^] is obtained. Next, the corresponding bin in BKS is identified. 
The BKS method assigns the pattern X^ to the best representative decision in 
that bin. 

The operation of the BKS technique can be illustrated using the same exam­
ple used for naive Bayes decision rule where two face matchers are used for 
identifying three users. A sample BKS table for this example is shown in Table 
3.1. The first column in Table 3.1 is the fist of all possible decision vectors that 
can be output by the two face matchers. The second column is a count of the 
number of training instances from each user that produced the corresponding 
decision vector. The third column represents the decision to be output when the 
corresponding decision vector is obtained for a test sequence. In this example, 
there are ties for the decision vectors [Alice, Charlie] and [Charlie, Bob]. Typ­
ically, the ties are broken arbitrarily. We also observe that there are no training 
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Table 3.1. A sample behavior knowledge space lookup table. Here, two face recognition al­
gorithms are used for identifying three users. 100 face images from each user are used for 
constructing the BKS lookup table. 

Possible decision 
vectors [ci,C2] 

Alice, Alice 
Alice, Bob 

Alice, Charlie 
Bob, Alice 
Bob, Bob 

Bob, Charlie 
Charlie, Alice 
Charhe, Bob 

Charlie, Charlie 

Number of training 
instances from each 

user 
30, 2, 4 
12, 38, 5 

23, 10, 23 
0,0,0 

6,25,11 
3, 12, 21 
19, 8, 6 
3,3,3 

4, 2, 27 

Decision label after 
fusion 

AUce 
Bob 

AUce, Charlie 
Alice, Bob, Charlie 

Bob 
Charlie 
Alice 

Alice, Bob, Charlie 
Charlie 

samples corresponding to the decision vector [Bob, Alice]. In such cases, the 
decision labels are assigned at random. 

The advantage of the BKS method is that it takes into account the relative 
performance of the matchers and the correlation between the matchers. The 
limitation of this method is the large number of training samples required to 
train the behavior-knowledge space. This problem is especially pronounced in 
the case of a biometric system operating in the identification mode with a large 
number of enrolled users. 

3.6 Summary 
Information fusion in biometrics can be accomplished at several levels. In 

this chapter we examined fusion strategies pertaining to the sensor, feature set, 
rank and decision levels. Fusion at the match score level will be discussed in 
detail in Chapter 4. 

Sensor level fusion reconciles information at the raw data level. Mosaic-
ing multiple samples of the same biometric (e.g., multiple impressions of a 
finger) is an example of this type of fusion. Feature level fusion typically in­
volves augmenting the feature vectors arising from multiple feature extractors 
and subjecting the fused feature vector to a feature transformation algorithm. 
This enables the system to compute discriminatory features that can enhance 
matching performance. Another application of feature level fusion is in tem­
plate update (or improvement) where information from multiple feature sets 
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(corresponding to a single biometric) is used to refine a biometric template. 
Rank level fusion is suitable for biometric systems operating in the identifica­
tion mode. Decision level fusion is, perhaps, the simplest form of fusion that 
uses only the final outputs of individual sub-systems. 

While the availability of multiple sources of biometric information (pertain­
ing either to a single trait or to multiple traits) may present a compelling case for 
fusion, the correlation between the sources has to be examined before determin­
ing their suitability for fusion. Combining uncorrelated or negatively correlated 
sources is expected to result in a better improvement in matching performance 
than combining positively correlated sources. This has been demonstrated by 
Kuncheva et al., 2000 for fusion at the decision level using the majority vote 
scheme. Combining sources that make complementary errors is assumed to be 
beneficial. Kuncheva and Whitaker, 2003 discuss ten statistics that measure 
the diversity among binary classifiers: the Q-statistic, correlation coefficient, 
disagreement measure, double-fault measure, entropy of votes, difficulty in­
dex, Kohavi-Wolpert variance, inter-rater agreement, generalized diversity and 
coincident failure diversity. The authors state that there is a lack of definitive 
connection between these diversity measures and the improvement in match­
ing performance obtained via decision fusion. In other words, it is difficult to 
formulate an efficient fusion rule based on the knowledge of these measures 
alone. Correlation between sources is not the only driving factor behind fusion 
- the performance disparity between individual sources of information also im­
pacts the matching accuracy of the fusion scheme. If the performance disparity 
between component classifiers is large, then the performance of the "stronger" 
classifier may be diluted by the "weaker" one (Daugman, 2000). Defining a 
suitable diversity metric that would help predict the performance of a particular 
fusion scheme has been elusive thus far (Kuncheva, 2003). 

There has been a proliferation of work discussing different fusion method­
ologies to combine multiple sources of biometric information. We conclude 
this chapter by presenting four tables that categorize some of the representative 
work in the multibiometric literature based on the sources of information used 
(see Tables 3.2, 3.3, 3.4, and 3.5). These tables also list the level of fusion and 
the fusion strategy employed to perform evidence reconciliation. It is immedi­
ately apparent, upon perusing these tables, that fusion at the match score level 
has received the most attention in the literature. 
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Notes 
1 The discriminant function is used to classify an input pattern. Typically, a 

discriminant function is defined for each pattern class and the input pattern 
is assigned to the class whose discriminant function gives the maximum 
response. 



Chapter 4 

SCORE LEVEL FUSION 

4.1 Introduction 
The match score is a measure of similarity between the input and template 

biometric feature vectors. When match scores output by different biometric 
matchers are consolidated in order to arrive at a final recognition decision, 
fusion is said to be done at the match score level. This is also known as fusion 
at the measurement level or confidence level. Apart from the raw data and 
feature vectors, the match scores contain the richest information about the input 
pattern. Also, it is relatively easy to access and combine the scores generated 
by different biometric matchers. Consequently, information fusion at the match 
score level is the most commonly used approach in multibiometric systems. 

The general flow of information in a match score level fusion scheme is 
shown in Figure 4.1. It must be noted that the match scores generated by the 
individual matchers may not be homogeneous. For example, one matcher may 
output a distance or dissimilarity measure (a smaller distance indicates a better 
match) while another may output a similarity measure (a larger similarity value 
indicates a better match). Furthermore, the outputs of the individual matchers 
need not be on the same numerical scale (range). Finally, the match scores 
may follow different probability distributions. These three factors make match 
score level fusion a challenging problem. In this chapter, we will analyze 
some of the techniques to perform match score level fusion. We first present 
a mathematical framework that describes classifier combination from a pattern 
recognition perspective. 
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Figure 4.1. Flow of information in a match score level fusion scheme. In this example, the match 
scores have been combined using the sum of scores fusion rule after min-max normalization of 
each matcher's output. Note that the match scores generated by the face and fingerprint matchers 
are similarity measures. The range of match scores is assumed to be [—1, +1] and [0,100] for 
the face and fingerprint matchers, respectively. 
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4.2 Classifier combination rules 
In the context of statistical pattern recognition, Kittler et al., 1998 developed 

a theoretical framework for consolidating the evidence obtained from multiple 
classifiers, where each classifier makes use of a different representation derived 
from the same input pattern. Consider the problem of classifying an input pat­
tern X into one of M possible classes {cji, a;2,..., CJM} based on the evidence 
provided by R different classifiers. Let Xj be the feature vector (derived from 
the input pattern X) presented to the j ^ ^ classifier. In general, each of the R 
classifiers can have its own multidimensional feature vector derived from the 
input pattern X. In the chosen feature space, each class LJ^ can be modeled by 
a probability density function p{xj \u;k) and its prior probability of occurrence 
is denoted by P{uJk)' 

According to the Bayesian decision theory (Duda et al., 2001), given the 
feature vectors aj^, j = 1 , . . . , iJ, the input pattern X should be assigned to the 
class ujr that maximizes the posteriori probability, i.e.. 

Assign X —^ ojr if 

P{uJr\xi,,,.,XR) > P{uk\xi,...,XR), (4.1) 

where k — 1 , . . . , M. The Bayesian decision rule stated in Equation 4.1 is 
known as the minimum error-rate classification rule in the pattern recognition 
literature. This rule assumes a zero-one loss function which assigns no loss to a 
correct decision and assigns a unit loss to any misclassification error. The pos­
terior probabilities in Equation 4.1 can be expressed in terms of the conditional 
joint probabiHty densities of the feature vectors, p ( x i , . . . , Xi?|c<;/c), by using 
the Bayes rule as follows: 

P{uJk\xu, ..,XR) = —^^— , . p . .• (4.2) 
l.i=iP{xi^'' • ^XR\UJI)P{UJI) 

Kittler et al., 1998 suggest many approximations to simplify the computa­
tion of the posterior probability in Equation 4.2 which lead to five classifier 
combination strategies. All the five strategies are based on the assumption 
of statistical independence of the R feature representations xi,... ,XR. Under 
this assumption, the conditional joint probability density p{x i , . . . , XR \u;k) can 
be expressed as the product of the marginal conditional densities, i.e., 

R 

p{xi,...,XR\u;k) = n^*!^^'l^^)' (4.3) 

where k = 1 , . . . , M. In a multimodal biometric system, each one of the R 
classifiers uses features from a different biometric trait. Different biometric 
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traits of an individual (e.g., face, fingerprint and hand geometry) generally tend 
to be mutually independent. Hence, the underlying assumption in Equation 4.3 
is reasonable in most multimodal biometric systems. On the other hand, the 
independence assumption may not be true for a multi-sample biometric system 
(e.g., two impressions of the same finger) that uses the same representation 
scheme (e.g., minutiae) for each sample. This is because different samples of 
the same biometric trait usually tend to be correlated. 

Product Rule: This rule is a direct implication of the assumption of statistical 
independence between the R feature representations xi^.., ^XR. The product 
decision rule can be stated as 

Assign X —^ LJr if 

R R 

P{^r) ]\p{^3\^r) > P{^k) ]\p{Xj\uJk), (4.4) 

where k = 1 , . . . , M. The product rule can also be expressed in terms of the 
product of the posteriori probabilities of the individual classifiers as follows. 

Assign X ^^ uJr if 

where fc = 1 , . . . , M. Further, in most practical biometric systems all classes 
(M users in the identification mode and "genuine" and "impostor" classes 
in the verification mode) are assigned equal prior probabilities. Under this 
assumption, the product rule can be simplified as 

Assign X —> LVr if 

R R 

llP{u;r\xj)>llP{u;j,\xj). (4.6) 
3=1 j=l 

One of the main limitations of the product rule is its sensitivity to errors in the 
estimation of the posteriori probabilities. Even if one of the classifiers outputs 
a probability close to zero, the product of the R posteriori probabilities is rather 
small and this often leads to an incorrect classification decision. 

Sum Rule: The sum rule is more effective than the product rule when the 
input X tends to be noisy, leading to errors in the estimation of the posteriori 
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probabilities. In such a scenario, we can assume that the posteriori probabiUties 
do not deviate dramatically from the prior probabilities for each class, i.e., 

P{uJk\xj) = P{uJk){l + 5j^k). (4.7) 

where 5j^k is a constant, 0 < 5j^k « U j = 1 , . . . , i?; k = 1 , . . . , M. 
Substituting Equation 4.7 for the posteriori probabilities in Equation 4.5, we 
get 

(p(^.))"'-" =^'"^>n('+^M). (4.8) 

Expanding the product on the right hand side in Equation 4.8 and neglecting 
the higher order terms, we can approximate the product in terms of a summation 
as follows. 

R R 

n(i+M^i+x]^,>. (4.9) 
3=1 j = l 

Further, by substituting for Sj^k from Equation 4.7, we get 

Finally, substituting Equations 4.9 and 4.10 into Equation 4.5 for the product 
rule, we obtain the sum decision rule which can be stated as follows: 

Assign X -^ Ur if 

i? "I r R 

(1 - R)P{u;r) + Y,Pi^r\Xj) > > U l - R)P{^k) + Y,P{uJk\Xj) } , 

j=l ) [ 3=1 
(4.11) 

where A: = 1 , . . . , M. When the prior probabilities are equal, the sum rule can 
be expressed as follows. 

Assign X ^^ Ur if 

R R 

Y,P{uJr\Xj) > Y,Pi^k\Xj), (4.12) 
j = l 3=1 

where /c = 1, . . . , M. The decision rule in Equation 4.12 is also known as the 
mean or average decision rule because it is equivalent to assigning the input 
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pattern to the class that has the maximum average posteriori probabihty over 
all the R classifiers. 

As mentioned earlier, the sum rule is primarily based on the assumption 
that the posteriori probabilities P{ujk\xj) do not deviate much from the prior 
probabilities P{ujk)' In general, this assumption is unrealistic because the 
feature vectors x\^.., ^XR contain significant discriminatory information about 
the pattern class. However, Kittler et al., 1998 showed that the sum rule is robust 
to errors in the estimation of the posteriori probabilities. Therefore, the sum 
decision rule usually works quite well in practice and is commonly used in 
multibiometric systems. 

Max Rule: The max rule approximates the mean of the posteriori probabilities 
by their maximum value, i.e., 

I D 

— }2P{ijJk\xj) ^m3.yLP{uJk\xj). (4.13) 

Hence, the max rule can be stated as follows: 

Assign X —^ Ur if 

I (1 - R)P{uJr) + RumxP{uJr\xj) \ > I (1 - R)P{uJk) + 

Rm3.y.P{uJk\xj) M4.14) 
j=i J 

where k = 1 , . . . , M. Under the assumption of equal priors, the max rule can 
be simplified as 

Assign X -^ uor if 

maxP(a;r.|cc7) > maxP(a;'/.|a:jj), fc=l,...,M. (4.15) 

Min Rule: It is well known that the product of probabilities is always less than 
or equal to the minimum value of probability in the product. Hence, 

J l P(a;jt|cCj) < vcniiP{ijJk\xj). (4.16) 

By substituting this upper bound in place of the product term in Equation 
4.5, we obtain the min rule which can be stated as 
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Assign X —^ iJr if 

' )J\, > ' (u u^ A : - 1 , . . . , M . (4.17) 
(P(u;,))(^-^) {P{u,)i''-'^ 

If the prior probabilities of all the classes are equal, the min rule reduces to 

Assign X -^ ujr if 

R R 
vcAriP{ur\xj)>vcLmP{ijOk\xj)^ A: = 1,. . . ,M. (4.18) 

Median Rule: If we assume equal priors for all the classes, the sum rule in 
Equation 4.12 can be viewed as the mean rule. The mean rule assigns a pattern 
to the class that has the maximum average posteriori probability over all the 
classifiers. Since the average posteriori probability is sensitive to outliers, it is 
often replaced by the median value. The median decision rule can be stated as 

Assign X -^ (jjr if 

medianf^iP{ijOr\xj) > medianf^iP{uJk\xj)^ /c = 1 , . . . , M. (4.19) 

The classifier combination rules developed by Kittler et al., 1998 can be used 
in a multibiometric system only if the output of each biometric matcher is of 
the form P{LJk\xj) i.e., the posteriori probability of class Uk given the features 
extracted by the j ^ ^ modality from the input biometric sample X. In practice, 
most biometric matchers output only a match score Sj^k- Verlinde et al., 1999 
proposed that the match score Sj^k is related to P{ujk\xj) as follows: 

Sj^k = 9 {P{^k\xj)) + (3{xj), (4.20) 

where ^ is a monotonic function and /? is the error made by the biometric 
matcher that depends on the input features. This error could be due to the noise 
introduced by the sensor during the acquisition of the biometric signal, and the 
errors made by the feature extraction and matching processes. If we assume 
that P is zero, it is reasonable to approximate P(ook\xj) by P{ojk\sj^k)' ^^ this 
scenario, the classifier combination rules can be applied for fusion of match 
scores from different biometric matchers. On the other hand, if we assume that 
the value of /? is non-zero, P{uJk\sj^k) i^^y not be a good estimate of P(uJk\xj). 
Hence, it is not possible to directly apply the classifier combination rules in 
such a scenario. 



98 HANDBOOK OF MULTIBIOMETRICS 

4.3 Score fusion techniques 
Let us consider a multibiometric system operating in the verification mode 

where the output of each biometric matcher is a match score (the formulation 
presented below can be trivially extended to the identification scenario also). 
Since the goal of the multibiometric system is to determine whether the input 
biometric sample X belongs to a "genuine" user or an "impostor", the number 
of classes (M) is now reduced to two. The minimum error-rate decision rule in 
Equation 4.1 is based on the assumption that all types of errors (misclassifying 
a sample from class a;/, as CJ/^/, V fc, fc' = 1 , . . . , M, k ^ k') are equally costly. 
Most practical verification systems assign different costs to the false accept 
and false reject errors. Let Ai and A2 be the cost (or loss) associated with the 
false accept and false reject errors, respectively, and let 77 = A1/A2 be the ratio 
of the two cost values. Therefore, when a biometric system operating in the 
verification mode has different costs for the false accept and false reject errors, 
the modified Bayesian decision rule is 

Assign X —» genuine if 

P{genuine\xi^... ^XR 

P{inipostor\xi^... ^XR) 

In score level fusion, it is assumed that the feature representations of the R 
biometric matchers c c i , . . . , 0̂ 7̂  are not available. Hence, the posteriori prob­
abilities P{genuine | x i , . . . , XR) and P{impostor\xi^..., XR) must be es­
timated from the vector of match scores s — [51,52, . . . , SR\, where Sj is the 
match score provided by the j ^ ^ matcher, j = 1 , . . . , i? (note that since the 
class is fixed as either "genuine" or "impostor", we drop the subscript k that 
represents the class information). Techniques that have been proposed for esti­
mating these posteriori probabilities can be divided into three broad categories 
listed below. 

1 The first approach assumes that the posteriori probabilities P{genuine | x 1, 
. . . , XR) 3nd P{impostor \XI ^..., XR) can be approximated by P ( ^ e n m n e | 
s = [^i, 5 2 , . . . , SR]) and P{impostor\s = [^i, 5 2 , . . . , SR]), respectively. 
Conversion of the vector of scores, s, into the probabilities P{genuine\s) 
and P{impostor\s) requires explicit estimation of the underlying condi­
tional densities p{s\genuine) and p{s\impostor). Hence, this approach 
is referred to as density-based score fusion. After estimating the densities, 
the probabilities P{genuine\s) and P{impostor\s) are computed, and the 
Bayesian decision rule in Equation 4.21 can be used to make a decision. 

2 Accurate estimation of the class conditional densities p{s\genuine) and 
p{s\impostor) is possible only when the number of match scores available 
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for training the fusion module is large. Also, the assumption that the poste­
riori probabilities P{genuine\xi^...,XR) and P{impostor\xi^..., XR) 
can be approximated by P{genuine\s) and P{impostor\s) is valid only 
when the value of /? in Equation 4.20 is zero. Hence, in cases where the 
number of training match scores is limited and/or /3's are non-zero, an alter­
native approach is to transform the match scores obtained from the different 
matchers into a common domain in order to make them compatible. This 
transformation is known as score normalization and the resulting fusion ap­
proach is known as transformation based score fusion. In the transformed 
domain, the sum, max and min classifier combination rules can be directly 
applied. In general, the normalized scores do not have any probabilistic 
interpretation. Therefore, the product rule given by Equation 4.6 cannot be 
applied. 

3 The third approach is classifier based score fusion where the relationship 
between the vector of match scores [si, ^ 2 , . . . , SR] and the posteriori prob­
abilities, P{genuine\si^S2^''' ^SR) and P{impostor\si^S2^ - - - ^SR), is 
indirectly learned using a pattern classifier. 

It must be emphasized that these three methodologies are essentially different 
approaches to solving the same problem, namely, deciding whether the input 
pattern X belongs to the "genuine" or the "impostor" class based on the match 
score vector [^i, S2, . . . , SR] generated by the R different biometric matchers. 
Each method has its own advantages and limitations. Further, each method 
requires estimation of some parameters from the training data and exhibits 
different levels of sensitivity to problems like lack of sufficient training data 
and noisy training samples. Finally, none of these three methods is guaranteed 
to provide optimum performance under all scenarios. In the following sections, 
we will describe these three approaches in detail. 

4.4 Density-based score fusion 
Let Sgen and Simp be the random variables denoting the genuine and impostor 

match scores, respectively. Let Fgen{s) be the distribution function of Sgen and 
fgen{s) be the corresponding density, i.e., 

P{Sgen <S)= Fgenis) = J fgen{v)dv. (4.22) 

Similarly, let Fimp{s) be the distribution function of Simp and fimp(s) be the 
corresponding density, i.e., 

P{Simp < s) = Fimp{s) = / fimp{v)dv. (4.23) 
J —oo 
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The densities fgen (s) and fimp{s) are known as the class conditional densities 
because they represent the probability density functions of the match score given 
that the score comes from the genuine or impostor class {p{s\genuine) and 
p{s\i7n'postor)), respectively. The densities fgen{s) and fimp{s) are usually 
not known and have to be estimated from a set of training scores from the 
genuine and impostor classes. 

Density estimation can be done either by parametric or non-parametric meth­
ods (Duda et al., 2001). In parametric density estimation techniques, the form 
of the density function is assumed to be known and only the parameters of 
this density function are estimated from the training data. For example, if we 
assume a Gaussian (normal) density function, only the mean and the standard 
deviation parameters that characterize this density are estimated during train­
ing. On the other hand, non-parametric techniques do not assume any standard 
form for the density function and are essentially data-driven. The Parzen win­
dow and K-NN density estimation schemes fall in this category. In the context 
of multibiometric systems, it is very difficult to choose a specific parametric 
form for the density of genuine and impostor scores. It is well known that the 
commonly assumed Gaussian density approximation is usually not appropri­
ate for genuine and impostor scores of a biometric matcher. The match score 
distributions generally have a large tail and may have more than one mode 
(see Figure 4.2). However, the Gaussian distribution is unimodal and does 
not capture the information contained in the tails of the distribution very well, 
making it inappropriate for modeling genuine and impostor score distributions. 
Another major problem that biometric researchers are facing is that they do 
not have access to large amounts of training data (especially genuine match 
scores) to reliably estimate the genuine and impostor densities. For example, 
if a multibiometric database has n users and if each user provides m biometric 
samples, then the maximum number of genuine scores, Ngen, that can be ob­
tained from this database is nm{m — l ) /2. On the other hand, n{n — l)m^ 
impostor matches, Nimp, can be performed using the same database. Suppose 
that n = 100 and m = 4, the number of genuine scores available is only 600 
while the number of impostor scores is 158,400. Due to the limited availability 
of training data, especially genuine scores, the density estimation method must 
be chosen carefully. 

Snelick et al., 2003 adopt a parametric approach to estimate the conditional 
densities of the match scores. They assume a normal distribution for the con­
ditional densities of the match scores, i.e., 

p{sj \genuine) ^ Af{/J^j,gen, ^j,gen) (4.24) 

and 

p{sj\impostor) - M{iij^imp, (Tj.imp), (4.25) 
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Figure 4.2. Histograms of match scores and the corresponding Gaussian density estimates for 
the Face-G matcher in the NIST BSSRl database, (a) Genuine and (b) Impostor. Note that 
the Gaussian density does not account well for the tail in the genuine score distribution and the 
multiple modes in the impostor score distribution. 

where fJ^j^gen (f^j^mp) and crĵ ên (o'j^imp) ^^^ the mean and standard deviation 
of the genuine (impostor) match scores of the j ^ ^ matcher, respectively. Based 
on the training data containing Ngen genuine scores and Nimp impostor scores 
for each matcher, the maximum UkeUhood estimates of the parameters jJij^gen^ 
^j,gen^ l^j.imp^ f̂̂ d (Tj^imp ^^ obtained as follows. 

Â , 

^j.gen — 

gen 

(4.26) 

Ni, 

f^j,imp — iV, imp 
E»; j.impi 

(4.27) 

1 
No 

a j.gen E' AT /_^ ^^j,9en f''j,gen) (4.28) 

1 
Ni zmp 

N, E( 
where s 
jth j ^ ^ | . ^ 

impostor class 

imp .^^ 

th 

^j,imp f^j,imp) (4.29) 

j.gen (^),imp^ represents the r'^ genuine (impostor) training score of the 
J"-" matcher, z = 1 , . . . , Ngen for the genuine class and i = 1 , . . . , lytmp 
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Given a test match score ŝ  for the j^^ matcher, the posteriori probabiUties of 
the score belonging to a genuine user and an impostor are computed as follows. 

P{genuine\s^j) = ^^-^ j^^y^ (4.30) 

and 

p(s^A \impostor)P( impostor) 
PUmpostorls^.) = ^—^— / , / . -, (4.31) 

wherep(sp = {p{s^\genuine)P{genuine) + p{s^j\inipostor) P{impostor)) 
and P{genuine) and P{inipostor) are the prior probabilities of a genuine 
user and an impostor, respectively. Snelick et al., 2003 assumed that prior 
probabilities of the genuine and impostor classes are equal and the matchers 
are conditional independent. Hence, the posteriori probabilities based on the 
scores from the different matchers can be computed as follows. 

R 

P{genuine\s\^..., 5^) = TT P{genuine\s^j) (4.32) 

and 

R 

P{impostor\s\^..., 5^) = j T P{impostor\s^j). (4.33) 

The final accept/reject decision is based on the Bayesian decision rule in 
Equation 4.21 which can be stated as follows. 

Assign X^ -^ genuine if 

P{genuine\s\^ • • • '̂̂ i? 
P{impostor\s\^... ^s^p>) 

where X^ is the given test sample and 77 is the decision threshold which is a 
tradeoff between the false accept and false reject error rates. When the goal 
is to minimize the total error rate (sum of the false accept and the false reject 
rates), the value of 77 should be set to 1. As pointed out earlier, the assumption 
of a normal distribution for the scores is generally not true for biometric match 
scores. 

Jain et al., 2005 propose the use of the Parzen window based non-parametric 
density estimation method (Duda et al., 2001) to estimate the conditional density 
of the genuine and impostor scores. After estimating the conditional densities. 
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equations 4.30 through 4.34 can be appUed to make a decision. Although 
the Parzen window density estimation technique is appropriate for estimating 
the conditional densities p{sj\genuine) and p{sj\impostor), especially when 
the densities are non-Gaussian, the resulting density estimates may still have 
inaccuracies due to the finite training set and the problems in choosing the 
optimum window width during the density estimation process. 

Both Snelick et al., 2003 and Jain et al., 2005 estimate only the marginal 
densities of the individual matchers in a multibiometric system. The combina­
tion of these marginal densities is achieved using the framework developed by 
Kittler et al., 1998 based on the assumption of statistical independence of the 
feature vectors (or the biometric matchers). Prabhakar and Jain, 2002 argue that 
the assumption of statistical independence of the matchers may not be true in 
a multi-algorithm biometric system that uses different feature representations 
and different matching algorithms on the same biometric trait. Hence, they 
propose a scheme based on non-parametric estimation of the joint multivariate 
density. Using the genuine and impostor match scores from the R matchers 
that were available for training, they directly estimate the ii-variate densities 
p ( 5 i , . . . , SR\genuine) and p{si^..., sR\impostor). But estimating the joint 
multivariate densities requires a larger number of training samples than estimat­
ing the univariate (marginal) densities. Hence, this approach is applicable only 
when a very large amount of training data is available to estimate the joint den­
sities. Based on the joint densities, the posteriori probabilities can be computed 
using the Bayes rule as follows. 

P{genuine\si,..., SR) 
p{si^ • • • 5 SR\genuine)P{genuine) 

P{SI,...,SR) 
(4.35) 

and 

P{impostor \sI^..., SR) 

where 

^ ( ^ 1 , . . . , SR\impostor)P{impostor) 

P{si,' ^SR) 
(4.36) 

p ( s i , . . . ^SR) = p{si^... ^SR\genuine)P{genuine) + 

p{si^' • • •>SR\impostor)P{impostor). 

Hence, the ratio of the posteriori probabilities is given by 

P{genuine\si,..., SR) p{si^... ,SR\genuine)P{genuine) 

P{impostor\sI^..., SR) p{si^... , SR\impostor)P{impostor)' 
(4.37) 
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When the prior probabiHties of the genuine and impostor classes are equal, the 
ratio of the posteriori probabilities is 

P(genuine\si,...,SR) _ p{si,.,, ,SR\genuine) 

P{impostor\sI^... ^SR) p{si^... ^sji\impostor)' 

The terms p ( s i , . . . , SR\genuine) and p{si^..., SR\impostor) are also re­
ferred to as the likelihood of the genuine and impostor class with respect to 
[ s i , . . . , SR\. Hence, the ratio on the right hand side in Equation 4.38 is known 
as the likelihood ratio. The Neyman-Pearson theorem (Lehmann and Ro­
mano, 2005) states that when the prior probabilities of the classes are equal 
(or not known), the optimal test for deciding whether a match score vector 
s = [ s i , . . . , SR] corresponds to a genuine or impostor match is the likehhood 
ratio test. The Neyman-Pearson decision rule is optimal in the sense that if we 
assume that the false accept rate (FAR) is given, the likelihood ratio test will 
minimize the false reject rate (FRR) for the fixed FAR and no other decision 
rule will give a lower FRR. The decision rule based on the likehhood ratio test 
can be stated as follows. 

Assign X -^ genuine if 

p{su,,.,SR\genuine) ^ 
p{si^,,. ,SR\inipostor) ~ 

where r] is the threshold value that achieves the specified value of FAR. The 
likelihood ratio test is optimal only when the underlying densities are either 
known or can be estimated very accurately. Hence, given a set of genuine and 
impostor match scores, it is important to be able to estimate the conditional 
densities fgen{s) and fimpi^) without incurring large errors in the estimation 
process. 

Another important consideration is that the distribution of genuine and im­
postor scores of some biometric matchers may exhibit discrete components. 
This happens because most biometric matching algorithms apply certain thresh­
olds at various stages in the matching process. When the required threshold 
conditions are not met, pre-determined match scores are output by the matcher 
(e.g., some fingerprint matchers produce a match score of zero if the number of 
extracted minutiae is less than a threshold, irrespective of how many minutiae 
actually match between the query and the template). This leads to discrete 
components in the match score distribution that cannot be modeled accurately 
using a continuous density function. Thus, discrete components need to be 
detected and the discrete and continuous portions of the density must be mod­
eled separately to avoid large errors in estimating fgen{s) and fimp{s). To 
address this problem, Dass et al., 2005 propose a framework for combining the 
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match scores from multiple matchers based on generalized densities estimated 
from the genuine and impostor match scores. The generalized densities are a 
mixture of discrete and continuous components and a brief description of the 
methodology used for computing the generalized densities is presented below. 

4,4.1 Generalized densities 
The following methodology models a distribution based on a generic set 

of observed scores (the same formulation can be used for both genuine and 
impostor scores from any biometric matcher). Let S denote a generic match 
score with distribution function F and density f{s), i.e., 

P{S <s) = F{s) = I f{v)dv. (4.40) 

For a fixed threshold T, the discrete values are identified as those values SQ 
with P{S = So) > T, where T is a threshold, 0 < T < 1. Since the 
underlying match score distribution is unknown, the probability P(S = SQ) 
can be estimated by N{so)/N, where N{so) is the number of observations in 
the data set that equals SQ and Â  is the total number of observations. Let the 
subset of all discrete components for a match score distribution be denoted by 

V.[SO:^>T]. (4.41) 

The discrete components constitute a proportion po = Ylsoev ^N ^^^ 
of the total of Â  available observations. The subset C of observations can be 
obtained by removing all discrete components from the available data set. The 
scores in C constitute a proportion pc = I — PD of the entire data set, and they 
are used to estimate the continuous component of the distribution (Fc{s)) and 
the corresponding density (fc{s)). A non-parametric kernel density estimate of 
fc{s) is obtained from C as follows. The empirical distribution function for the 
observations in C is computed as 

^ vec 
where Nc is the number of observations in C and 

'̂  — ^ ~ [ 0, otherwise; * 

also, Nc = Npc. Note that Fc{s) = Oy s < Smin and Fc{s) = ly s > 
Smax^ where Smin and Smax^ respectively, are the minimum and maximum 
values of the observations in C. For values of 5, Smin < s < Smax^ not con­
tained in C, Fc{s), is obtained by linear interpolation. Next, B samples are 
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simulated from Fc{s), and the density estimate of /c(s) , fc{s), is obtained 
from the simulated samples using a Gaussian kernel density estimator. The 
optimal bandwidth, h, of the kernel is obtained using the "solve-the-equation" 
bandwidth estimator (Wand and Jones, 1995), which is an automatic bandwidth 
selector that prevents oversmoothing and preserves important properties of the 
distribution of match scores. The generalized density is defined as 

f{s) = PC Us) + E ^ • ^i^ = ^o}' (4.44) 
soev 

where 

The distribution function corresponding to the generalized density is defined 

as 

F{s)=pc I fc{v)dv+ Yl 
N{so) 

N 
SQEV, SO<S 

(4.46) 

For a multibiometric system with R matchers, the generalized densities and 
distributions estimated for the genuine (impostor) scores for the j ^^ matcher will 
be denoted by fj,gen{s) and Fj^gen{s) {fj^imp{s) and Fj^imp{s)), respectively, 
for j = 1, 2 , . . . , ii. Figures 4.3 (a)-(f) give the plots of fj^gen{x) and fj^mpi^) 
(j = 1 , . . . , iZ) for the distributions of observed genuine and impostor match 
scores for i i = 3 modalities of the MSU-Multimodal database (Jain et al., 
2005). Figures 4.3 (a)-(f) also give the histograms of the genuine and impostor 
match scores for the three modalities. The "spikes" (see Figures 4.3 (d) and 
(e)) represent the detected discrete components whose individual heights are 
greater than the threshold T = 0.02. Note that the individual "spikes" cannot 
be represented by a continuous density function. Forcing a continuous density 
estimate for these values will result in gross density estimation errors and yield 
suboptimal performance of the multibiometric system. 

The above procedure only estimates the marginal score distributions of each 
of the R matchers in the multibiometric system instead of estimating the joint 
distribution. The simplest approach to estimate the joint distribution is to as­
sume statistical independence between the R matchers and estimate the joint 
distribution as the product of the R marginal distributions. In this case, the 
fused likelihood ratio (referred to as the product fusion score, PFS{s)) is the 
product of the likelihood ratios of the R matchers. Given the vector of match 
scores s = [^i,..., SR], PFS{S) is given by 
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Figure 4.3. Histograms of match scores and corresponding generalized density estimates for 
MSU-Multimodal database. First Row: Histograms of match scores for face modality (a) genuine 
and (b) impostor. Second Row: Histograms of match scores for fingerprint modality (c) genuine 
and (d) impostor. Third Row: Histograms of match scores for hand geometry modality (e) 
genuine and (f) impostor. The solid line is the estimated density using the kernel density estimator, 
and the spikes in (d) and (e) correspond to the detected discrete components. Note that no score 
normalization needs to be performed before density estimation. 
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PFS(s) = ^(^i^--^^^l^^^^^^^) ^ A hgeni^j) ^ (4 47) 
p{si,.,,,SR\impostor) - ^ fj,imp{sj)' 

where fj^geni') and fj^impi') are the estimates of generaUzed densities of the 
genuine and impostor scores of the j ^ ^ biometric matcher. Hence, the decision 
rule can be stated as follows. 

Assign X —> genuine if 

PFS{s) > rj, (4.48) 

where 77 is the decision threshold. 
However, a more appropriate procedure to estimate the joint density is to 

incorporate the correlation (if it exists) among the R matchers. One way to 
incorporate the correlation between the matchers is by using the copula models 
(Nelsen, 1999). Let F i ,F2 , . . . , F R be R continuous distribution functions 
on the real line and F be a ii-dimensional distribution function with the j ^ ^ 
marginal given by Fj, j = 1, 2 , . . . , i?. According to Sklar's Theorem (Nelsen, 
1999), there exists a unique function C{ui^U2^...,UR) from [0,1]^ —> [0,1] 
satisfying 

F(5i, 52, . . . , 5i?) - C{Fi{si),F2{s2),..., FR{SR)), (4.49) 

where 51,52,... ,5/? are R real numbers. The function C is known as a 
i?-copula function that "couples" the one-dimensional distribution functions 
Fi, F2 , . . . , F/^ to obtain the iZ-variate function F . Equation 4.49 can also be 
used to construct iZ-dimensional distribution function F whose marginals are 
the distributions Fi, F 2 , . . . , Fj^. 

Copula functions are effective in modeling a joint distribution whose marginal 
distributions are non-normal and do not have a parametric form (as is usually 
the case for biometric match scores). The family of copulas considered in Dass 
et al., 2005 is the i?-dimensional multivariate Gaussian copulas (Cherubini 
et al., 2004). These functions can represent a variety of dependence structures 
among the R matchers using SLRXR correlation matrix S^. Note that multivari­
ate Gaussian copulas do not assume that the joint or marginal distributions are 
Gaussian. They simply incorporate the second-order dependence in the form 
of 3. R X R correlation matrix. The /^-dimensional Gaussian copula function 
with correlation matrix Ep is given by 

C§^{ui,. ..,UR) = $ g ^ ( ^ - H ^ i ) , . . . .^-\UR)), (4.50) 

where each Uj G [0,1] for j = 1 , . . . , i?, $(•) is the distribution function of the 
standard normal, $ ~ ̂  (•) is its inverse, and $ ^ is the i?-dimensional distribution 
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function of a random vector Z — [Zi^.,. ^ZR)^ with component means and 
variances given by 0 and 1, respectively. The density of C^ , denoted by c^ , 
is given by 

C^ {UI,...,UR) = 
dui ...duR 

c^i^{^-'{m),...,^-\uR)) 
(4.51) 

where ^^ (t^i,.. . , t̂ /̂ ) is the joint probability density function of the i?-variate 
normal distribution with mean 0 and covariance matrix Sp, and (l){x) is the 
standard normal density function. 

The (m, n)-th entry of Sp, pmn^ measures the degree of correlation between 
the scores of the m-th and n-th matchers for m, n = 1 , . . . , i?. In practice, 
the correlation matrix Ep is unknown. We can estimate Sp using the product 
moment correlation of normal quantiles corresponding to the observed scores 
from the R matchers as follows. Suppose there are N training score vectors 
available for density estimation. Let s* = [ s} , . . . , 5^] denote the i^^ score 
vector, i = 1,... ,N. The normal quantile of score 5̂  is given by 

^j = $ - i ( F , ( 4 ) ) , (4.52) 

where Fj{') denotes the j^^ marginal distribution, j — l , . . . , i ? and i — 
1 , . . . , Â . Thus, the i^^ score vector s^ = [s\^.,. ^ 5^] is transformed to 
z'^ = [z\^... ^ z}^], i = 1 , . . . , AT'. The covariance matrix of the Â  vectors, 
z^ , . . . , z^, is estimated as follows. 

1 ^ 
(4.53) 

i = l 

where 

1 ^ 
z = - ^ z \ (4.54) 

i=l 

The estimate of the (m, n)-th entry of Ep, pmn^ is given by 

Pmn = -y====, (4.55) 

where amn is the (m, n)-th entry of E. 
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The joint density function of genuine (impostor) match scores for R matchers, 

gen \Jimp' f^en (fiLp) for some correlation matrix T,p^gen (^p,imp) is given by 

f^enisu •••,SR)= j J I fj,gen{Sj) cg^,^, J F l , g e n ( s i ) , • • • , FR^gen{SR)) 

(4.56) 

and 

fiLpi^U- ••,SR)= I f j fj,imp{Sj) j cg^_^^^(Fl,Jmp(si), • • • , FR,imp{sR)). 

(4.57) 

Given the vector of match scores s — [ s i , . . . , SR\, the Ukehhood ratio of 
the joint densities known as the copula fusion score CFS{s), is given by 

CFS{s) = 
f^en(.Sl,---,SR) 

^^p,ge„(^^>9en{si),.. .,FR^genisR)) 

,imp 
= PFSis) r " - ; ^ " ; ; ; J ; ; ; , (4.58) 

where Fj^gen{sj) and Fj^imp{sj) are, respectively, the estimates of generaUzed 
distribution functions for the j ^ ^ biometric component, and c^ is the density 

of C§ as defined in Equation 4.51. The decision rule is given by 

Assign X -^ genuine if 

CFS{s) > 77, (4.59) 

where rj is the decision threshold. 
Dass et al., 2005 demonstrated that fusion based on the generalized density 

estimates gives better performance over fusion based on continuous density 
estimates. The MSU-Multimodal database (Jain et al., 2005) collected from 100 
users, with each user providing 5 face, fingerprint and hand geometry samples 
is used in this study. Fingerprint matching is done using the minutiae features 
(Jain et al., 1997b) and the output of the fingerprint matcher is a similarity 
score. Eigenface coefficients are used to represent features of the face image 
(Turk and Pentland, 1991). The Euclidean distance between the eigenface 
coefficients of the face template and that of the input face is used as the matching 
score. The hand geometry images are represented by a 14-dimensional feature 
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vector (Jain et al., 1999d) and the matching score is computed as the Euclidean 
distance between the input feature vector and the template feature vector. The 
histograms of the genuine and impostor scores of the three modalities in the 
MSU-Multimodal database are shown in Figure 4.3. 

Figure 4.4 shows the ROC curves for the product and copula fusion rules 
(given by equations 4.48 and 4.59, respectively) and the ROC curves based on 
the match scores of the individual modalities for the MSU-Multimodal database. 
Figure 4.4(a) shows the recognition performance when the genuine and impos­
tor score distributions of the three modalities are modeled purely by continuous 
densities, while Figure 4.4(b) gives the ROCs for generalized densities. Sub­
stantial performance improvement is obtained by modeling the match score 
distributions as a mixture of discrete and continuous components (generalized 
densities); for example, at a False Accept Rate (FAR) of 0.1%, the correspond­
ing values of Genuine Accept Rate (GAR) for the continuous and generalized 
densities are 90.0% and 99.26%, respectively. Further, we can observe that al­
though both the product and copula fusion rules give significantly better match­
ing performance compared to the best individual modality, there is not much 
difference between the product and copula fusion rules. Dass et al., 2005 argue 
that this is due to the fact that the best modality in the MSU-Multimodal database 
is approximately independent (low correlation) of the other modalities, so the 
copula fusion involving more parameters than product fusion was not needed. 
The estimates of the correlation of the best single modality (fingerprint) with 
the other two modahties (face and hand geometry) were —0.01 and —0.11 for 
the genuine scores, and —0.05 and —0.04 for the impostor scores. 

Dass et al., 2005 also applied the product and copula fusion rules on the match 
scores in the first partition of the Biometric Scores Set - Release I (BSSRl) 
released by NIST (see Appendix A.3 for more details). The ROC curves for 
the product and copula fusion rules on the NIST BSSRl database are shown 
in Figure 4.5. In the NIST BSSRl database, the correlation estimates of the 
best single modality (finger 2) with the other three modalities (facel, face2, and 
fingerl modalities, respectively) are —0.02, —0.06, and 0.43 for the genuine 
cases and 0.04, 0.02, and 0.14 for the impostor cases. Since the fusion is 
driven mostly by the best modality, the fact that this modality is approximately 
independent of the others means that the performances of product and copula 
fusion rules should be comparable to each other as reflected by the ROC curves 
in Figure 4.5. 

4.5 Transformation-based score fusion 
In practical multibiometric systems, the number of match scores available 

for training the fusion module is small due to the time, effort and cost in­
volved in collecting multibiometric data. Due to the limited availability of 
training data, accurate estimation of the joint conditional densities p{s = 
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Figure 4.5. Performance of product and copula fusion on the NIST BSSRl database. 

[ s i , . . . , SB\ \genuine) and p{s = [ s i , . . . , SR] \impostor) is not always possi­
ble. In such situations, a more appropriate fusion method is to directly combine 
the match scores provided by different matchers without converting them into 
posteriori probabilities. However, the combination of match scores is meaning­
ful only when the scores of the individual matchers are comparable. Hence, a 
transformation known as score normalization is applied to transform the match 
scores obtained from the different matchers into a common domain. The sum, 
max and min classifier combination rules developed by Kittler et al., 1998 (as 
discussed earlier in Section 4.2) can be applied to obtain the fused match scores 
from the normalized match scores. Since the normalized match scores do not 
have any probabilistic interpretation, the sum, max and min rules are referred 
to as sum of scores, max score and min score fusion rules, respectively. The 
max score and min score fusion rules are referred to as order statistics. The 
combined match score can also be computed as a weighted sum of the match 
scores of the individual matchers (Ross and Jain, 2003; Wang et al., 2003), 
which is known as the weighted sum of scores rule (or simply, weighted sum 
rule). 

Figures 4.3(a)-(f) show the conditional distributions of the face, fingerprint 
and hand geometry match scores of the MSU-Multimodal database used in ex-
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periments by Jain et al., 2005. The scores obtained from the face and hand 
geometry matchers are distance scores whereas those obtained from the finger­
print matcher are similarity scores. One can also observe the non-homogeneity 
(differences in the numerical scale and statistical distributions) in these scores 
demonstrating the need for score normalization prior to any meaningful com­
bination. 

4.5.1 Score Normalization 

Score normalization refers to changing the location and scale parameters 
of the match score distributions at the outputs of the individual matchers, so 
that the match scores of different matchers are transformed into a common 
domain. When the parameters used for normalization are determined using 
a fixed training set, it is referred to as fixed score normalization (Brunelli and 
Falavigna, 1995). In such a case, the set of match scores available for training the 
fusion module of a multibiometric system is examined and a suitable statistical 
model is chosen to fit to the data. Based on the model, the score normalization 
parameters are determined. In adaptive score normalization, the normalization 
parameters are estimated based on the match score of the current test sample. 
This approach has the ability to adapt to variations in the input data such as the 
changes in the duration of the speech signals in speaker recognition systems. 

For a good normalization scheme, the estimates of the location and scale 
parameters of the match score distribution must be robust and efficient. Ro­
bustness refers to insensitivity to the presence of outliers whereas efficiency 
refers to the proximity of the obtained estimates to the optimal estimates when 
the distribution of the data is known. Huber, 1981 explains the concepts of 
robustness and efficiency of statistical procedures and emphasizes the need for 
statistical procedures that have both these desirable characteristics. Although 
many techniques can be used for score normalization, the challenge lies in 
identifying a technique that is both robust and efficient. 

The simplest normalization technique is the min-max normalization. Min-
max normalization is best suited for the case where the bounds (maximum 
and minimum values) of the scores produced by a matcher are known. In 
this case, we can easily transform the minimum and maximum scores to 0 
and 1, respectively. However, even if the match scores are not bounded, we 
can estimate the minimum and maximum values for the given set of training 
match scores and then apply the min-max normalization. Let 5^ denote the i*^ 
match score output by the j ^ ^ matcher, i = 1,2, . . . , AT; j = 1, 2 , . . . , i^ (i? is 
the number of matchers and Â  is the number of match scores available in the 
training set). The min-max normalized score, ns*, for the test score s^ is given 
by 
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/ • AT ?• 

, s'- — mm'Li s'-
" 4 = N i N i- (4-60) 

max l̂̂ ^ Sj — mm-1,1 Sj 
When the minimum and maximum values are estimated from the given set of 
match scores, this method is not robust (i.e., the method is sensitive to outHers 
in the data used for estimation). Min-max normahzation retains the original 
distribution of scores except for a scahng factor and transforms all the scores 
into a common range [0,1]. Distance scores can be transformed into similarity 
scores by subtracting the normalized score from 1. 

Decimal scaling can be applied when the scores of different matchers are on 
a logarithmic scale. For example, if one matcher has scores in the range [0,10] 
and the other has scores in the range [0,1000], the following normalization 
could be applied to transform the scores of both the matchers to the common 
[0,1] range. 

where nj = logio^iax^^ s^. In the example with two matchers where the score 
ranges are [0,10] and [0,1000], the values of n would be 1 and 3, respectively. 
The problems with this approach are the lack of robustness and the implicit 
assumption that the scores of different matchers vary by a logarithmic factor. 

The most commonly used score normalization technique is the z-score nor­
malization that uses the arithmetic mean and standard deviation of the training 
data. This scheme can be expected to perform well if the average and the vari­
ance of the score distributions of the matchers are available. If we do not know 
the values of these two parameters, then we need to estimate them based on the 
given training set. The z-score normalized score is given by 

. t - ' j H 
ns) = -^ -, (4.62) 

where jij is the arithmetic mean and GJ is the standard deviation for the j ^ ^ 
matcher. However, both mean and standard deviation are sensitive to outliers 
and hence, this method is not robust. Z-score normalization does not guarantee 
a common numerical range for the normalized scores of the different matchers. 
If the distribution of the scores is not Gaussian, z-score normalization does not 
preserve the distribution of the given set of scores. This is due to the fact that 
mean and standard deviation are the optimal location and scale parameters only 
for a Gaussian distribution. While mean and standard deviation are reasonable 
estimates of location and scale, respectively, they are not optimal for an arbitrary 
match score distribution. 
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The median and median absolute deviation (MAD) statistics are insensitive 
to outliers as well as points in the extreme tails of the distribution. Hence, a 
normalization scheme using median and MAD would be robust and is given by 

s^A — medn 

where medj = medianfLis'j and MADj = medianfLi\s^j — medj\. How­
ever, the median and the MAD estimators have a low efficiency compared to 
the mean and the standard deviation estimators, i.e., when the score distribution 
is not Gaussian, median and MAD are poor estimates of the location and scale 
parameters. Therefore, this normahzation technique does not preserve the input 
score distribution and does not transform the scores into a common numerical 
range. 

Cappelli et al., 2000 use a double sigmoid function for score normalization 
in a multibiometric system that combines different fingerprint matchers. The 
normalized score is given by 

i f 5 * < r , 

(4.64) ns*- = < 

l+exp {A^ 

l+exp H^) 
Otherwise, 

where r is the reference operating point and a i and 0̂2 denote the left and 
right edges of the region in which the function is linear. The double sigmoid 
function exhibits hnear characteristics in the interval (r — a i , r — 0̂ 2). Figure 
4.6 shows an example of the double sigmoid normalization, where the scores 
in the [0,300] range are mapped to the [0,1] range using r = 200, a i — 20 and 
^2 = 30. 
While the double sigmoid normalization scheme transforms the scores into the 
[0,1] interval, it requires careful tuning of the parameters r, cei and 0̂ 2 to obtain 
good efficiency. Generally, r is chosen to be some value falling in the region 
of overlap between the genuine and impostor score distributions, and ai and 
0̂2 are set so that they correspond to the extent of overlap between the two 
distributions toward the left and right of r, respectively. This normalization 
scheme provides a linear transformation of the scores in the region of overlap, 
while the scores outside this region are transformed non-linearly. The double 
sigmoid normalization is very similar to the min-max normalization followed by 
the application of a two-quadrics (QQ) or a logistic (LG) function as suggested 
by Snelick et al., 2005. When the values of ai and 0̂ 2 are large, the double 
sigmoid normalization closely resembles the QQ-min-max normalization. On 
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Figure 4.6. Double sigmoid normalization with r = 200, a i =20 , and a2 = 30. 

the other hand, we can make the double sigmoid normalization approach toward 
LG-min-max normaUzation by assigning small values to ai and 0̂ 2. 

The tanh-estimators introduced by Hampel et al., 1986 are robust and highly 
efficient. The tanh normalization is given by 

ns] = - \ tanh | 0.01 
s) - liGH 

O-GH 
+ 1 (4.65) 

where I^GH and aGH are the mean and standard deviation estimates, respec­
tively, of the genuine score distribution as given by Hampel estimators. Hampel 
estimators are based on the following influence (7/;)-function: 

^|J{u) = 
a * sign{u) 

a * sign{u) * ( ^ ^ 

0 < |i^| < a, 
a < \u\ < 6, 

b < \u\ < c, 

\u\ > c, 

(4.66) 

where 

sign{u} — + 1, i f ^ > 0 , 
— 1, otherwise. 

(4.67) 
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A plot of the Hampel influence function is shown in Figure 4.7. The Hampel 
influence function reduces the influence of the scores at the tails of the distri­
bution (identified by a, b, and c) during the estimation of the location and scale 
parameters. Hence, this method is not sensitive to outliers. If many of the 
points that constitute the tail of the distributions are discarded, the estimate is 
robust but not efficient (optimal). On the other hand, if all the points that con­
stitute the tail of the distributions are considered, the estimate is not robust but 
its efficiency increases. Therefore, the parameters a, b, and c must be carefully 
chosen depending on the amount of robustness required which in turn depends 
on the amount of noise in the available training data. 

Figure 4.7, Hampel influence function with a — 0.7, h — 0.85, and c — 0.95. 

Mosteller and Tukey, 1977 introduce the biweight location and scale esti­
mators that are robust and efficient. But, the biweight estimators are iterative 
in nature (initial estimates of the biweight location and scale parameters are 
chosen, and these estimates are updated based on the training scores), and are 
applicable only for Gaussian data. A summary of the characteristics of the 
different normalization techniques discussed here is shown in Table 4.1. The 
min-max, decimal scaling and z-score normalization schemes are efficient, but 
are not robust to outliers. On the other hand, the median normalization scheme 
is robust but inefficient. Only the double sigmoid and tanh-estimators have both 
the desired characteristics, namely, robustness and efficiency. 
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Table 4.1. Summary of score normalization techniques. 

Normalization Teclinique 
Min-max 

Decimal scaling 
Z-score 

Median and MAD 
Double sigmoid 
Tanh-estimators 

Robustness 
No 
No 
No 
Yes 
Yes 
Yes 

Efficiency 
High 
High 
High 

Moderate 
High 
High 

4.5.2 Evaluation of normalization techniques 
It must be noted that no normalization scheme has been shown to be optimal 

for all kinds of match score data. Hence, a number of score normalization 
techniques are admissible, i.e., they may work better than other normalization 
techniques depending on the fusion problem at hand. In practice, it is recom­
mended that a number of normalization techniques be evaluated to determine 
the one that gives the best performance on the given data. Jain et al., 2005 
studied the performance of a multimodal biometric system comprising of face, 
fingerprint and hand geometry modalities under different normalization and 
fusion techniques. They used the MSU-Multimodal database for these exper­
iments. The simple sum of scores, the max-score, and the min-score fusion 
methods were applied on the normalized scores. The normalized scores were 
obtained by using the following techniques: simple distance-to-similarity trans­
formation with no change in scale (STrans), min-max normalization (Minmax), 
z-score normalization (ZScore), median-MAD normalization (Median), double 
sigmoid normalization (Sigmoid), tanh normalization (Tanh), and Parzen nor­
malization (Parzen). Note that the conversion of match scores into posteriori 
probabilities by the Parzen window density estimation method is really not a 
normalization technique. It actually falls under the density-based match score 
fusion approach. However, Jain et al., 2005 treat the ratio of the posteriori 
probabilities of the genuine and impostor classes as a normalized match score 
and hence, they refer to this method as Parzen normalization. 

The recognition performance of the face, fingerprint, and hand geometry 
modalities in the MSU-Multimodal database is shown in Figure 4.8. We observe 
that the fingerprint modality gives the best performance followed by the face 
and hand geometry modalities in that order. At a False Accept Rate (FAR) of 
0.1%, the Genuine Accept Rates (GAR) are 83.6%, 67.7% and 46.8% for the 
fingerprint, face and hand geometry modalities, respectively. 
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Figure 4.8. ROC curves for the individual modalities in the MSU-Multimodal database. 

To evaluate the performance after fusion, the set of match scores obtained 
from the MSU-Multimodal database was randomly partitioned into training 
(60% of the scores were used for estimating the normalization parameters) and 
test (the remaining 40% of the scores were used for evaluating the performance 
of the multibiometric system) sets. This random splitting of the database into 
training and test sets was repeated 40 times resulting in 40 trials. Table 4.2 
summarizes the average (over the 40 trials) Genuine Accept Rate (GAR) of the 
multimodal system along with the standard deviation of the GAR (shown in 
parentheses) for different normalization and fusion schemes, at a False Accept 
Rate (FAR) of 0.1%. From Table 4.2, it is apparent that the sum of scores 
method provides better recognition performance than the max-score and min-
score methods. Hence, we compare the different normalization techniques only 
for the sum of scores fusion method. 

Figure 4.9 shows the recognition performance of the multimodal system 
when the scores that are normalized using various techniques described above, 
are combined using the sum of scores method. We observe that a multimodal 
system employing the sum of scores method provides better performance than 
the best unimodal system (fingerprint in this case) for all normalization tech­
niques except median-MAD normalization. For example, at a FAR of 0.1%, 
the GAR of the fingerprint module is about 83.6%, while that of the multimodal 
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Table 4.2. Genuine Accept Rate (GAR) (%) of different normalization and fusion techniques 
at the 0.1% False Accept Rate (FAR) for the MSU-Multimodal database. At 0.1% FAR, the 
GAR of the unimodal systems are 83.6%, 67.7% and 46.8% for the fingerprint, face and hand 
geometry modalities, respectively. Note that the values in the table represent average GAR, and 
the values indicated in parentheses correspond to the standard deviation of GAR computed over 
the 40 trials of randomly splitting the available data into training and test sets. 

Normalization 
Technique 

STrans 
Minmax 
Zscore 
Median 
Sigmoid 

Tanh 
Parzen 

Sum of scores 
98.3 (0.4) 
97.8 (0.6) 
98.6 (0.4) 
84.5 (1.3) 
96.5 (1.3) 
98.5 (0.4) 
95.7 (0.9) 

Fusion Technique 
Max-score 
46.7 (2.3) 
67.0 (2.5) 
92.1(1.1) 
83.7 (1.6) 
83.7(1.6) 
86.9(1.8) 
93.6 (2.0) 

Min-score 
83.9(1.6) 
83.9(1.6) 
84.8 (1.6) 
68.8 (2.2) 
83.1 (1.8) 
85.6(1.5) 
83.9 (1.9) 

system is 98.6% when z-score normalization is used. The performance of the 
multimodal biometric system is a significant improvement over the best uni­
modal system and it underscores the benefit of deploying multimodal systems. 

Among the various normalization techniques on this dataset, we observe that 
the tanh and min-max normalization techniques outperform other techniques 
at low FARs. At higher FARs, z-score normalization provides slightly better 
performance than tanh and min-max normalization. In the multimodal system 
based on the MSU-Multimodal database, the combined score of test pattern, 
5^^^, after sum of scores fusion is just a linear transformation of the score vec­
tor s^ = [5^1,4^4]' i-e-' s}us = (« i4 - ^i) + (^24 - ^2) + (^34 - ^3), 
where s\,S2, and s\ correspond to the match scores for the test pattern obtained 
from the face, fingerprint and hand geometry matchers, respectively. The ef­
fect of different normalization techniques is to determine the weights a i , a2, 
and as, and the biases 61, 62, and 63. Since the value of the MAD statistic 
for the fingerprint scores is very small compared to that of face and hand ge­
ometry scores, the median-MAD normalization assigns a much larger weight 
to the fingerprint score (a2 » ai and 02 > > as). This is a direct conse­
quence of the moderate efficiency of the median-MAD estimator. Since the 
distribution of the fingerprint scores (see Figures 4.3(c) and (d)) deviates dras­
tically from the Gaussian assumption, the median and MAD statistics are not 
the correct measures of location and scale, respectively. In this case, the com­
bined score is approximately equal to the fingerprint score and the performance 
of the multimodal system is close to that of the fingerprint module. On the 
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Figure 4.9. ROC curves for sum of scores fusion method under different normalization schemes 
on the MSU-Multimodal database. 

Other hand, min-max normahzation, z-score normaUzation, tanh and distance-
to-similarity transformation assign more reasonable weights to the scores of 
the three modalities. Therefore, the recognition performance of the multimodal 
system applying one of these four normalization techniques (min-max, z-score, 
tanh and distance-to-similarity transformation) along with the sum of scores 
fusion method is significantly better than that of the fingerprint matcher. The 
difference in performance between the min-max, z-score, tanh and distance-to-
similarity transformation is relatively small. However, it should be noted that 
the raw scores of the three modalities used in the experiments are comparable 
and, hence, a simple distance-to-similarity conversion works reasonably well 
here. If the match scores of the three modalities were significantly different, 
then the distance-to-similarity transformation method would not work as well. 

For sum of scores fusion, we observe that the performance of a robust normal­
ization technique Hke tanh is almost the same as that of the non-robust techniques 
like min-max and z-score normalization. However, the performance of such 
non-robust techniques is highly dependent on the accuracy of the estimates 
of the location and scale parameters. The scores produced by the matchers 
used by Jain et al., 2005 are unbounded and, hence, can theoretically produce 
any value in the interval (0, o6). Also, the statistics of the scores (e.g., aver-
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age or deviation from the average) produced by these three matchers will not be 
known. Therefore, parameters like the average and standard deviation of scores 
(needed for z-score normalization) have to be estimated from the available data. 
The particular data set used in these experiments did not contain any outliers 
and, hence, the performance resulting from the use of non-robust normalization 
techniques was not degraded. 

In order to demonstrate the sensitivity of the min-max and z-score normaliza­
tion techniques in the presence of outliers, Jain et al., 2005 artificially introduced 
outliers in the fingerprint scores. For min-max normalization, a single outlier 
whose value is 75%, 125%, 150%, 175% or 200% of the maximum score (in 
the training set) is introduced. Figure 4.10 shows the recognition performance 
of the multimodal system after the introduction of the outlier. We observe that 
the performance is sensitive to the maximum score. A single outlier that is 
twice the original maximum score can reduce the recognition rate of the mul­
timodal system by 3-5% depending on the operating point of the system. The 
performance degradation is more severe at lower values of FAR. 

1.50*TrueMax 

2.00*TrueMax 

86 
10 

False Accept Rate (%) 
10" 

Figure 4.10. Robustness analysis of min-max normalization. Note that TrueMax represents the 
maximum fingerprint match score in the training set. The different ROC curves are obtained by 
replacing the maximum fingerprint score in the training set with an outlier score whose value is 
75%, 125%, 150%, 175% or 200% of TrueMax. 
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In the case of z-score normalization, several outliers were introduced in 
the fingerprint match scores so that the standard deviation of the fingerprint 
score is increased by 125%, 150%, 175% or 200% of the original standard 
deviation. In one trial, some large match scores were reduced to decrease the 
standard deviation of the scores to 75% of the original value. In the case of an 
increase in standard deviation, the performance improves after the introduction 
of outliers as indicated in Figure 4.11. Since the original standard deviation 
was small, fingerprint scores were assigned a higher weight compared to the 
other modalities. As the standard deviation is increased, the dominance of 
the fingerprint modality was reduced and this resulted in improved recognition 
rates. However, the goal of this experiment was to show the sensitivity of the 
system to those estimated parameters that can be easily affected by outliers. A 
similar experiment was done for tanh normalization technique and, as shown 
in Figure 4.12, there is no significant variation in the performance of the tanh 
normalization method after the introduction of outliers. This result highlights 
the robustness of the tanh normalization method. 

In many cases, the maximum and minimum score output by a matcher will 
be known in advance. Therefore, the min-max normalization scheme may not 
require an explicit estimation procedure based on the training data. 

4.6 Classifier-based score fusion 

In classifier-based score fusion, a pattern classifier (Duda et al., 2001) is 
used to indirectly learn the relationship between the vector of match scores 
[^i, S2, . . . , SR] provided by the R biometric matchers and the posteriori proba­
bilities of the genuine and impostor classes, namely, P{genuine\si, 52 , . . . , SR) 
and P{impostor \sI^ S2^ • . . , SR). In this approach, the vector of match scores 
[51,52,..., SR] is treated as a feature vector which is then classified into one of 
two classes: "genuine user" or "impostor". Based on the training set of match 
scores from the genuine and impostor classes, the classifier learns a decision 
boundary between the two classes. Figure 4.13 shows an example of a linear 
decision boundary learned by a classifier based on the genuine and impostor 
match scores from two different matchers. During verification, any match score 
vector that falls in the genuine region (to the right of the decision boundary in 
Figure 4.13) is classified as "genuine". In general, the decision boundary can be 
quite complex depending on the nature of the classifier. However, the classifier 
is capable of learning the decision boundary irrespective of how the feature 
vectors are generated. Hence, the output scores of the different matchers can 
be non-homogeneous (distance or similarity metric, different numerical ranges, 
etc.) and no processing is required prior to designing the classifier. A limitation 
of the classifier-based score fusion approach is that it is not easy to fix one type 
of error (say FAR) and then compute the FRR at the specified FAR. 
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Figure 4.11. Robustness analysis of z-score normalization. Note that TrueStd represents the 
standard deviation of the fingerprint match scores in the training set. The different ROC curves 
are obtained by introducing outlier scores in the training set so that the standard deviation of the 
fingerprint match scores is changed to 75%, 125%, 150%, 175% or 200% of TrueStd. 

Several classifiers have been used to consolidate the match scores of mul­
tiple matchers and arrive at a decision. Brunelli and Falavigna, 1995 use a 
HyperBF network to combine matchers based on voice and face features. The 
speaker recognition subsystem was based on vector quantization of the acous­
tic parameter space and included an adaptation phase of the codebooks to the 
test environment. Face identification was achieved by analyzing three facial 
components, namely, eyes, nose, and mouth. The basic template matching 
technique was applied for face matching. While the rank-one recognition rates 
of the voice and face matchers were 88% and 91%, respectively, the fusion of 
these two matchers achieved a rank-one recognition rate of 98%. 

Verlinde and Cholet, 1999 compare the relative performance of three different 
classifiers, namely, the k-Nearest Neighbor classifier using vector quantization, 
the decision tree classifier, and the classifier based on logistic regression model 
when used for the fusion of match scores from three biometric matchers. The 
three matchers were based on profile face image, frontal face image, and voice. 
Experiments by Verlinde and Cholet, 1999 on the multimodal M2VTS database 
(Pigeon and Vandendrope, 1996) show that the total error rate (sum of the 
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Figure 4.12. Robustness analysis of tanh normalization. Note that TrueStd represents the stan­
dard deviation of the fingerprint match scores in the training set. The different ROC curves are 
obtained by introducing outlier scores in the training set so that the standard deviation of the 
fingerprint match scores is changed to 75%, 125%, 150%, 175% or 200% of TrueStd. 

false accept and false reject rates) of the multimodal system was an order of 
magnitude less than that of the individual modalities. While the total error rates 
of the individual modalities were 8.9% for profile face, 8.7% for frontal face, 
and 3.7% for speaker verification, the total error rate of the multimodal system 
was found to be 0.1% when the classifier based on logistic regression model 
was employed. 

Chatzis et al., 1999 use classical k-means clustering, fuzzy clustering and 
median radial basis function (MRBF) algorithms for fusion at the match score 
level. Five biometric matchers that were based on the grey-level and shape 
information of face image and voice features were employed. Each matcher 
provided a match score and a quality metric that measures the reliability of 
the match score, and these values were concatenated to form a ten-dimensional 
vector. Clustering algorithms were applied on this ten-dimensional feature 
vector to form two clusters, namely, genuine and impostor. 

Ben-Yacoub et al., 1999 evaluate a number of classification schemes for fu­
sion of match scores from multiple modalities, including support vector machine 
(SVM) with polynomial kernels, SVM with Gaussian kernels, C4.5 decision 
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Figure 4.13. Example of a linear decision boundary learned by a classifier in a 2-dimensional 
{R = 2) feature space. During verification, any match score vector that falls in the region 
marked as 'Genuine' (to the right of the decision boundary) is classified as "genuine user". On 
the other hand, any match score vector that falls in the region marked as 'Impostor' (to the left 
of the decision boundary) is classified as "impostor". 

trees, multilayer perceptron, Fisher linear discriminant, and Bayesian classifier. 
This evaluation is conducted on the XM2VTS database (Messer et al., 1999) 
consisting of 295 subjects. The database includes four recordings of each per­
son obtained at one month intervals. During each session, two recordings were 
made: a speech shot and a head rotation shot. The speech shot was composed of 
the frontal face recording of each subject during the dialogue. Face recognition 
was performed by using elastic graph matching (EGM) (Lades et al., 1993). 
Two different approaches were used for speaker verification. A sphericity mea­
sure (Bimbot et al., 1995) was used for text-independent speaker verification. 
Hidden Markov models (HMM) were used for text-dependent speaker verifi­
cation. The total error rate of 0.6% achieved by the Bayesian classifier was 
significantly lower than the total error rate of 1.48% achieved by the HMM 
based speaker recognition system, which was the best individual modality in 
terms of total error rate. 

Bigun et al., 1997 propose a new algorithm based on the Bayesian clas­
sifier for fusion in a multibiometric system. Their model takes into account 
the estimated accuracy of the individual classifiers during the fusion process. 
Sanderson and Paliwal, 2002 use a support vector machine (SVM) to combine 
the scores of face and speech experts. They show that the performance of 
such a classifier deteriorates under noisy input conditions. To overcome this 
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problem, they implement structurally noise-resistant classifiers like piece-wise 
linear classifier and modified Bayesian classifier. Wang et al., 2003 consider 
the match scores resulting from face and iris recognition modules as a two-
dimensional feature vector and use Fisher's discriminant analysis and a neural 
network classifier with radial basis function to classify the 2-dimensional match 
score vector into "genuine" and "impostor" classes. Ross and Jain, 2003 use 
decision tree and linear discriminant classifiers for combining the match scores 
of face, fingerprint and hand geometry modalities. Random forest algorithm 
was used by Ma et al., 2005 for the classification of 3-dimensional match score 
vectors described in Ross and Jain, 2003 into "genuine" and "impostor" classes. 

4,7 Comparison of score fusion techniques 
The existence of a large number of score fusion techniques makes it diffi­

cult for the designer of a multibiometric system to select an appropriate fusion 
method for the problem at hand. Most of these score fusion techniques have not 
been tested on benchmark databases. Recently, the National Institute of Stan­
dards and Technology (NIST) released a true multimodal match score database 
known as the Biometric Score Set Release-1 (National Institute of Standards and 
Technology, 2004) containing the face and fingerprint matching scores of 517 
individuals (see Appendix for more details). Also, a benchmark match score 
database based on the XM2VTS multimodal dataset (face and voice modali­
ties) has been released by IDIAP (Poh and Bengio, 2005a). The emergence 
of these benchmark databases is likely to result in a more careful and thor­
ough evaluation of score fusion techniques. In this section, we briefly compare 
some of the score fusion techniques based on the NIST BSSRl database. In 
order to clearly illustrate the differences in recognition performance of the var­
ious fusion schemes, we consider the match scores corresponding to only two 
biometric matchers in this database: the Face-G matcher and the fingerprint 
matcher corresponding to the right index fingerprint. Henceforth, we refer to 
these two matchers simply as face and fingerprint matchers, respectively. 

Firstly, we compare the recognition performance of the various classifier 
combination rules (Kittler et al., 1998) described in Section 4.2. As pointed 
out earlier in Section 4.3, we assume that the feature representations of the 
two biometric matchers xi and X2 are not available. Hence, the posteriori 
probabilities P{genuine\x 1^X2) and P{impostor\xi^ X2) are estimated from 
the vector of match scores s = [si, ^2], where si and S2 are the match scores 
provided by the face and fingerprint matchers, respectively. Further, we adopt 
the density-based score fusion approach and estimate the conditional densities 
p{si\genuine), p{si\impostor), p{s2\genuine) and p{s2\impostor) using a 
non-parametric density estimation technique. Specifically, we use a Gaussian 
kernel density estimator and the bandwidth of the kernel is obtained using the 
"solve-the-equation" bandwidth estimator (Wand and Jones, 1995). We also 
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assume that the prior probabiUties of the genuine and impostor classes are equal. 
80% of the genuine and impostor scores are used for estimating the conditional 
densities and the remaining 20% are used for evaluating the fusion performance. 
Five-fold cross validation is performed and the reported results correspond to 
the average over the five trials. 

Figure 4.14 shows the ROC curves for the face and fingerprint unibiometric 
systems as well as the ROC curves for the multibiometric system, when fusion 
is performed using the product, sum, max and min rules. We can clearly see that 
the fingerprint matcher is more accurate than the face matcher. For the selected 
face and fingerprint matchers in the NIST BSSRl database, we also observe that 
fusion using the product rule gives the best recognition performance. It must be 
noted that the only assumption in deriving the product rule is the independence 
between the biometric matchers. The sum, max and min rules are derived by 
introducing other constraints to the product rule. This explains the relatively 
good performance of the product rule compared to the other fusion rules. In 
general, the sum rule has been shown to perform well because it is less sensitive 
to errors in the probability estimates (Kittler et al., 1998). However, the sum rule 
is derived based on the strong assumption that genuine and impostor classes are 
highly ambiguous, and that the observed match scores enhance the prior class 
probabilities marginally. This assumption is not valid for the match scores in 
the NIST BSSRl database because the genuine and impostor score distributions 
have only a small region of overlap. Therefore, the sum rule does not provide 
any improvement in recognition performance over the best unimodal biometric 
system (fingerprint in this case). 

Secondly, we compare some of the transformation-based score fusion tech­
niques discussed in Section 4.5. Specifically, the match scores provided by the 
face and fingerprint matchers are first normalized using five different normal­
ization techniques, viz., min-max, z-score, median-MAD, double sigmoid and 
tanh techniques. The normalized match scores are then combined using the sum 
of scores method. Again, five-fold cross vahdation is performed using 80% of 
the genuine and impostor scores for estimating the normalization parameters, 
and the remaining 20% for evaluating the performance of the fusion technique. 
Figure 4,15 summarizes the matching performance of the multimodal biomet­
ric system when the normalized scores are combined using the sum of scores 
method. We observe that the multimodal system results in better performance 
than the best unimodal system (fingerprint in this case). Among the various 
normalization schemes, the min-max and tanh normaUzation techniques result 
in the best performance on the NIST BSSRl database. 

Finally, we evaluate the performance of a classifier-based score fusion scheme 
on the same data set. As indicated earlier, the classifier-based approach as­
signs a two-dimensional match score vector to one of the two classes, namely, 
genuine and impostor. A Support Vector Machine (SVM) with a radial basis 
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Figure 4.14. Comparison of recognition performance of the classifier combination rules pro­
posed by Kittler et al., 1998 on the NIST BSSRl database. In this experiment, the match scores 
are converted into probabilities using a non-parametric density estimation technique. 

function kernel is used for the classification and a five-fold cross-validation is 
performed. The SVM classifier has an average FAR of 0.01% (standard devi­
ation of 0.008%) and an average GAR of 95.1% (standard deviation of 3.4%). 
The performance of the SVM classifier is shown in Figure 4.16. Note that the 
operating point (FAR and the corresponding GAR) of a classifier-based score 
fusion scheme can be changed by tuning the parameters of the classifier. How­
ever, it is not always possible to fix the FAR and then compute the corresponding 
GAR in classifier-based score fusion. 

Figure 4.16 compares the performance of the best transformation-based score 
fusion technique (tanh normalization followed by sum of scores fusion) and the 
best density-based score fusion approach (product rule). We see that fusion 
based on the product rule has a lower recognition rate than the sum of scores 
fusion method (after tanh normalization) at small values of False Accept Rate 
(FAR). For example, at a FAR of 0.01%, the average Genuine Accept Rate 
(GAR) of the product rule is 92.4% while the sum of scores fusion has an 
average GAR of 96.5%. This may be due to the limited availability of gen­
uine match scores for estimating the conditional densities p{si\genuine) and 
p{s2\genuine), where si and 52 are the match scores provided by the face 
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Figure 4.15. ROC curves for sum of scores fusion method under different normalization schemes 
onNISTBSSRldataset. 

and fingerprint matchers, respectively. Since there are only 517 genuine match 
scores for each matcher in the NIST BSSRl database, the density estimates of 
the genuine scores are not very reliable. 

4.8 User-specific score fusion 
It is possible to further enhance the performance of multibiometric systems by 

adopting user-specific matching thresholds and user-specific weights. Matching 
thresholds are used by biometric matchers to classify a certain match score as 
being genuine or impostor. Weights, on the other hand, are used to indicate the 
importance of individual biometric matchers in a multibiometric framework. 
In the multibiometric systems described so far, we implicitly assumed that each 
biometric sub-system provides the same discriminatory information across all 
users. In practice, the performance of a particular sub-system will vary across 
users. 

Users of a biometric system are prone to different types of errors. The False 
Reject Rate (FRR) of users with large intra-class variations will be high. Simi­
larly, the False Accept Rate (FAR) amongst users having small inter-class vari­
ations will be high. Thus, a "strict" threshold will be appropriate to distinguish 
users exhibiting a high FAR, while a "loose" threshold may be necessary for 
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Figure 4.16. Comparison of recognition performance of the density-based, transformation-
based and classifier-based score fusion approaches on the NIST BSSRl database. 

users having a high FRR. Furthermore, in a multimodal system, it is instructive 
to assign different degrees of importance to the various traits on a user-by-user 
basis. This is especially significant when the biometric traits of a user cannot 
be reliably acquired. For example, users with persistently dry fingers may not 
be able to provide good quality fingerprints. Such users can experience higher 
false rejects when interacting with a fingerprint system. By reducing the weight 
of the fingerprint trait of such users and increasing the weights associated with 
the other traits, the FRR of these users can be reduced. 

A multibiometric system can be trained to invoke a specific set of threshold 
and weight parameters based on the claimed identity, / . Automatic learning 
and update of user-specific thresholds and weights can help reduce the error 
rates associated with a specific user, thereby improving the overall recognition 
accuracy of the system (Jain and Ross, 2002b). This will appeal to that segment 
of the population averse to interacting with a system that constantly requests 
them to provide multiple readings of the same biometric due to the poor quality 
of the acquired data. 

Toh et al., 2004 identify the following four paradigms in the context of 
learning user-specific weights and thresholds: 
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1 Learn globally, decide globally (GG): In this scheme, the multibiometric 
system learns a common set of weights for the different matchers irrespective 
of the user and uses a common (global) decision threshold for all users. 

2 Learn globally, decide locally (GL): The system learns a common set of 
weights for the different matchers irrespective of the user but uses user-
specific decision thresholds. 

3 Learn locally, decide globally (LG): The system learns user-specific weights 
and a common decision threshold 

4 Learn locally, decide locally (LL): The system learns user-specific weights 
and uses user-specific thresholds. 

In these four paradigms, the system either makes use of user-dependent param­
eters (thresholds and weights) for all users or the parameters are independent 
of the user. Fierrez-Aguilar et al., 2005a propose a new adaptive learning 
strategy that offers a trade-off between the user-specific and user-independent 
approaches. 

4.8.1 User-specific matching thresholds 
Jain and Ross, 2002b compute the matching thresholds for each user using 

the cumulative histogram of impostor scores corresponding to that user. Since 
a sufficient number of user-specific genuine scores would not be available when 
the user begins to use the system, only the impostor scores are used initially 
to learn the user-specific thresholds. The impostor scores are generated by 
comparing the feature sets of a user with feature sets of other users or with 
feature sets available in a predetermined impostor database. Suppose that the 
match scores have been quantized into 100 bins. The cumulative histogram at 
a value x ,̂ i = 1,2,... 100, is the sum of all those impostor scores less than or 
equal to Xi. The user-specific matching thresholds are computed as follows. 

1 For the i*̂  user in the database, let ̂ ^(7) correspond to the threshold in the 
cumulative histogram that retains 7 fraction of scores, 0 < 7 < 1. 

2 Using {^^(7)} as the matching threshold, compute {FARi{'y),GARi{j)}, 
where GAR is the Genuine Accept Rate. 

3 Compute the total FAR and GAR as 

FAR{j) = 5]FAi?,(7) 
i 

GARi-y) = ^GARi{-f). (4.68) 
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4 Use {FAR{-f),GAR{j)} to generate the ROC curve. 

Figure 4.17 shows that the choice of the threshold relies on the distribution of 
impostor scores for each user. This is in contrast to traditional methods where 
the threshold is established by pooling together the impostor scores associated 
with all the users. When the multibiometric system is deployed, the 7 corre­
sponding to a specified FAR is used to invoke the set of user-specific thresholds, 
{^^(7)}. Table 4.3 shows the user-specific thresholds (corresponding to a FAR 
of 1%) associated with the 10 users whose data was collected over a period of 
two months. The ROC curves indicating the improved performance as a result 
of using user-specific thresholds are shown in Figure 4.18. 

User-specific thresholds may also be derived via user-specific score normal­
ization schemes that have been widely used in the speaker recognition commu­
nity (see Poh and Bengio, 2005b and the references therein). The primary idea 
here is to shift and scale the genuine and/or impostor score distributions for each 
user so that their location coincides with a predetermined value. The amount 
of shift that is necessary determines the user-specific matching threshold. 

Table 4.3. User-specific thresholds for the biometric traits of 10 users at a FAR of 1%. 

User# 

1 
2 
3 
4 

5 
6 
7 

8 
9 
10 

Fingerprint 

14 
17 
15 
12 
11 
11 
16 

19 
11 

19 

Face 

~ 9 1 
91 
92 
94 

91 
90 
95 
92 
90 
94 

Hand Geometry 

94 

95 
95 
95 
90 
92 
94 

97 
96 
93 

4.8.2 User-specific weights 
Each biometric matcher provides a match score based on the input feature set 

and the template against which it is compared. These scores can be weighted 
according to the biometric trait used, in order to reduce the importance of less 
reliable biometric traits (and increase the influence of more reliable traits). The 
weights can be determined in several ways, three of which are described below. 
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Figure 4.17. The impostor distributions of the face biometric of three different users, (a), (c) 
and (e) are the histograms of impostor scores associated with the three users, (b), (d) and (0 
are the corresponding cumulative histograms. For 7 = 0.3, it is observed that the thresholds for 
each of the three users are different. 
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Figure 4.18. ROC curves exhibiting performance improvement when user-specific thresholds 
are utilized to verify a claimed identity, (a) Fingerprint and (b) Face. 
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1 Equal weights may be assigned to all the modalities, and the fused score 
obtained as 

1 "" 
^fus^ -^Sj, (4.69) 

where n represents the number of modalities considered. This technique 
assumes that the performance of the component classifiers are comparable 
(i.e., balanced classifiers), and that there is no reason to favor one modality 
over another. 

2 Different weights may be assigned to each modality based on their individual 
performance as summarized by the ROC curve or the EER. Wang et al., 2003 
use the following expression to compute the weights in a bimodal system 
utilizing the face and iris traits. 

Wi 
1-{FAR, + FRR,) 

2 - {FARj + FRRj + FARi + FRRi)' ^ ' ^ 

where z = l ,2 , j = l,2andi 7̂  j . The values for FAR and FRR in the above 
equation are threshold dependent. Thus, when the threshold is changed, the 
weights assigned to the individual modalities will be suitably modified. This 
technique is useful when the participating classifiers are imbalanced, i.e., 
when there is significant performance disparity between them. However, it 
must be noted that the use of order statistics (such as the min score, max 
score and median score fusion schemes) has been recommended when the 
classifiers are imbalanced and the optimal set of weights cannot be reliably 
estimated (Roli and Fumera, 2002; Tumer and Ghosh, 1999). 

3 The set of weights can also be determined on a user-by-user basis. This 
process entails searching the space of weights {wk,i^Wk^2^ • • • ^^k,n) for 
a user, k, such that the total error rate on a training set of fused scores 
corresponding to that user is minimized. The fused score is computed as 

n 

Typically, the constraints J2]=i ^k,j — 1 and Wk^j > 0 are applied when 
searching for the optimal set of weights for user k. The total error rate 
is the region of overlap of the genuine and impostor score distributions 
(sfus) corresponding to that user. This approach is beneficial when the 
performance of individual sub-systems varies significantly across users. 
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Figure 4.19. ROC curves when using (a) equal weights for the three traits and a user-specific 
matching threshold; and (b) user-specific weights for all the three traits and a common matching 
threshold (Jain and Ross, 2002b). 
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Table 4.4. Weights of different biometric modalities for 10 users (Jain and Ross, 2002b). 

User # 

i 
2 
3 
4 

5 
6 
7 
8 
9 
10 

Fingerprint 

{wi) 
0.5 
0.6 
0.4 
0.2 

0.5 
0.6 
0.6 
0.4 
0.5 
0.6 

Face 

('̂ ^2) 

0.3 
0.2 
0.1 
0.4 
0.2 
0.1 

0.1 
0.2 
0.1 
0.2 

Hand Geometry 

(^3) 
0.2 

0.2 

0.5 

0.4 

0.3 

0.3 

0.3 

0.4 

0.4 

0.2 

Jain and Ross, 2002b explore the use of a common matching threshold with 
user-specific weights. Table 4.4 lists the optimal weights {wi for fingerprint, 
W2 for face and w^ for hand geometry) computed for the set of 10 users listed 
in Table 4.3. From this table we observe that for user number 4, the weight 
assigned to the fingerprint modality is small {wi = 0.2). Upon examining the 
fingerprint images corresponding to this user (Figures 4.20(a) and 4.20(b)), it 
is apparent that the quality of the ridges is rather poor, therefore confounding 
both the minutiae extractor and matcher. Thus, the match scores in this instance 
will be unreliable. This demonstrates the importance of assigning user-specific 
weights to the individual biometric traits. Similarly, user number 3 has a small 
weight assigned to the face biometric, possibly due to changes in the pose of 
the face and ambient lighting during data acquisition (Figures 4.20(c), 4.20(d) 
and 4.20(e)). User number 2 has a small weight attached to hand geometry due 
to (repeated) incorrect placement of the hand and a slight curvature of the little 
finger (Figures 4.20(f) and 4.20(g)). The improvement in matching performance 
of the user-specific system is indicated by the ROC curves in Figure 4.19(b). 

The utilization of user-specific matching thresholds and weights presupposes 
the availability of a large number of genuine and impostor scores pertaining to an 
individual. Since the number of biometric samples obtained from an individual 
during enrollment is very limited, user-specific schemes cannot be invoked at 
the time of system deployment. As more and more biometric samples of a 
user are made available over a period of time, user-specific parameters can be 
utilized to enhance recognition accuracy. 
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Figure 4.20. Examples of users with varying weights for the different modalities, (a) and (b) 
Fingerprint images of user number 4 whose ridge details are not very clear (wi = 0.2). (c), (d) 
and (e) Varying face poses of user number 3 iw2 = 0.1). (f) and (g) Incorrect placement of hand 
and the curved finger of user number 2 (ws = 0.2). 
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4.9 Summary 
In a multibiometric system, fusion at the score level offers the best tradeoff 

between information content and ease of fusion. Hence, score level fusion is 
typically adopted by most multibiometric systems. Although a wide variety of 
score level fusion techniques have been proposed in the literature, these can be 
grouped into three main categories, viz., density-based, transformation-based 
and classifier-based schemes. The performance of each scheme depends on 
the amount and quality of the available training data. If a large number of 
match scores is available for training the fusion module, then density-based ap­
proaches such as the likelihood ratio test can be used. Estimating the genuine 
and impostor distributions may not always be feasible due to the limited num­
ber of training samples that are available. In such cases, transformation-based 
schemes are a viable alternative. The non-homogeneity of the match scores pre­
sented by the different matchers raises a number of challenges. Suitable score 
normalization schemes are essential in order to transform these match scores 
into a comparable domain. The sum of scores fusion method with simple score 
normalization (such as z-score) represents a commonly used transformation-
based scheme. Classification-based fusion schemes consolidate the outputs of 
different matchers into a single vector of scores which is then fed into a trained 
classifier. The classifier determines if this vector belongs to the "genuine" or 
"impostor" class. 

User-specific fusion schemes can be invoked if sufficient training data is 
accumulated over a period of time for individual users. However, the follow­
ing issues will have to be considered when deploying biometric systems with 
user-specific fusion schemes: (i) A malicious user may deliberately provide 
poor quality biometric data constantly (e.g., by touching the fingerprint sensor 
lightly), thereby forcing the system to reduce the weights associated with a 
specific biometric. The user may then claim that the biometric data belongs 
to someone else. Thus, the user can access a privilege and deny using it later, 
(ii) An intruder attempting to circumvent a biometric system might target en­
rolled users with known problems with their biometric data (e.g., users with 
calloused fingers or arthritis of the hand). Such users may have low weights 
associated with certain biometric traits and, therefore, the intruder will need to 
spoof only those traits with higher weights. Therefore, appropriate safeguards 
should be incorporated into multibiometric systems that employ user-specific 
fusion schemes. 

As stated in the previous chapter, the gain in the matching performance of a 
multibiometric system is affected by the correlation between the match scores 
emitted by the different biometric matchers (Kuncheva et al., 2000; Prabhakar 
and Jain, 2002; Poh and Bengio, 2005d). In general, if the match scores are 
uncorrected or negatively correlated, then the improvement in performance can 
be expected to be significant. Thus, combining two weak biometric matchers 
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that are uncorrelated may result in a significant improvement in performance 
than combining two strong biometric matchers that are positively correlated 
(this means, when more than two biometric matchers are available, combining 
the two best matchers will not always result in the best matcher pair). In view of 
this, it is imperative that system integrators do not discard biometric matchers 
whose individual performances are poor without attempting to fuse them with 
other matchers. 



Chapter 5 

FUSION INCORPORATING ANCILLARY 
INFORMATION 

5.1 Introduction 
In some applications, ancillary information may be available to the multibio-

metric system apart from the match score or identity decision provided by the 
individual biometric matchers. Examples of such ancillary information include 
measures indicating the quality of the acquired biometric sample (e.g., finger­
print image quality) or certain additional information about the user (known as 
soft biometrics) like gender, ethnicity, height or weight. The quality measures 
are derived from the same biometric sample that is used for verifying or estab­
lishing the identity of the user. Hence, the biometric signal quality information 
is intrinsic to a matcher. On the other hand, the soft biometric features may 
be derived from sources other than the acquired biometric sample. Hence, soft 
biometric information can be extrinsic to a biometric matcher. The objective 
of this chapter is to introduce the reader to a few representative techniques that 
exploit either intrinsic or extrinsic information to improve the performance of 
a multibiometric system. 

5.2 Quality-based fusion 
The quality of acquired biometric data directly impacts the ability of the 

biometric matcher to perform the matching process effectively. Noise can be 
present in the acquired biometric data mainly due to defective or improperly 
maintained sensors. For example, accumulation of dirt or the residual remains 
on a fingerprint sensor can result in a noisy fingerprint image. When noisy 
fingerprint images are processed by a minutiae based fingerprint recognition 
algorithm, a number of false (spurious) minutia points are detected leading 
to incorrect matching results. Figures 5.1(c) and 5.1(d) show the minutiae 
extracted from good quality (see Figure 5.1 (a)) and noisy fingerprint (see Figure 
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5.1(b)) images, respectively, using the minutiae extraction algorithm proposed 
by Jain et al., 1997a. We can observe that no false minutia is detected in 
the good quality fingerprint image shown in Figure 5.1(c). On the other hand. 
Figure 5.1 (d) shows that several spurious minutia points are detected in the noisy 
fingerprint image. In practice, some true minutia points may not be detected 
in poor quality images. The presence of spurious minutiae will eventually lead 
to errors in the fingerprint matching process. Chen et al., 2005b show that 
the performance of a minutiae-based matcher is sensitive to the quality of the 
fingerprint images. Quality scores were assigned to the fingerprint images in the 
Fingerprint Verification Competition (FVC) 2002 (Maio et al., 2002) database 
3 using a quality assessment algorithm that works in the frequency domain 
(see Section 5.2.1.1). The database was partitioned into five equal bins (the 
first bin corresponds to 20% of the fingerprint images in the database with the 
lowest quality and the fifth bin corresponds to 20% of the fingerprint images 
with the highest quality) based on the quality of the fingerprint images and five 
ROC curves were obtained (see Figure 5.2). The first ROC curve represents the 
performance of the matcher on the complete database and the other ROC curves 
represent the matching performance when the bins are successively pruned 
starting with the first (lowest quality) bin. From Figure 5.2, we can observe 
that the performance of the matcher improves as the poor quality images are 
excluded. 

Another example of noisy biometric data is blurred face or iris images due 
to poor camera focus, motion blur and improper illumination. Figure 5,3(b) 
shows an iris image whose quality is severely degraded due to motion blur, 
non-uniform illumination and occlusion by the upper eyelid. The quality of an 
iris image generally affects both the iris segmentation process and the amount 
of texture information available in the segmented iris pattern. Figures 5.3(a) 
and 5.3(c) show a good quality iris image and the corresponding iris pattern 
obtained after segmentation and normalization using the algorithms proposed 
by Daugman, 1999. We can observe the rich texture information contained 
in the iris pattern shown in Figure 5.3(c). On the other hand, the iris pattern 
(see Figure 5.3(d)) corresponding to the poor quality iris image in Figure 5.3(b) 
is affected by occlusion on the left side and blurring on the right side. The 
iris patterns obtained from the poor quality iris images will result in incorrect 
iris matching results. The degradation of the iris matching performance due to 
poor quality iris images was demonstrated by Chen et al., 2006. They classified 
iris images from the CASIAl.O iris database (Ma et al., 2003) into three quality 
classes, namely, poor, average and good, using a quality index based on wavelet 
transform (see Section 5.2.1.2). The performance of the iris matching algorithm 
proposed by Daugman, 1999 for each class of iris images was obtained (see 
Figure 5.4). Figure 5.4 clearly shows that poor quality iris images degrade the 
performance of an iris matching algorithm. 
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(a) (b) 

• * 

(0 (cl) 

Figure 5.1. Minutiae extraction results for fingerprint images of varying quality, (a) A good 
quality fingerprint image, (b) A noisy fingerprint image (due to smearing, residual deposits, 
etc.). (c) Minutia points detected in the good quality fingerprint image by an automatic minutiae 
extraction algorithm (Jain et al., 1997a). (d) Minutia points detected in the noisy fingerprint 
image by the same automatic minutiae extraction algorithm (Jain et al., 1997a). The circles 
represent true minutia points while the squares represent false (spurious) minutiae. Note that 
the classification of minutia points into true and false minutiae is performed by a human expert. 
While no spurious minutia is detected in the good quality fingerprint image, several false minutia 
points are detected when the fingerprint image quality is poor. 
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Figure 5.2. Improvement in the performance of a minutiae-based fingerprint matcher when poor 
quality fingerprint images are successively pruned from the database. 

We have seen that the recognition accuracy of a biometric system is highly 
sensitive to the quahty of the biometric input and noisy data can result in a 
significant reduction in the accuracy of the biometric system (Chen et al., 2005b; 
Chen et al., 2006). Estimating the quality of a biometric sample and predicting 
the performance of a biometric matcher based on the estimated quality can be 
very useful in building robust multibiometric systems. This can allow us to 
dynamically assign weights to the individual biometric matchers based on the 
quality of the input sample to be verified. For example, consider a bimodal 
biometric system with iris and fingerprint as the two modalities. Let us assume 
that during a particular access attempt by the user, the iris image is of poor 
quality (due to occlusion or loss of focus) but the fingerprint image quality is 
sufficiently good. In this case, we can assign a higher weight to the fingerprint 
matching result and a lower weight to the iris matching result. Even for the 
same biometric modality, different representations and matching algorithms 
may exhibit different levels of sensitivity to the quality of the biometric data. 
For example, a fingerprint image may not be of sufficient quality for the reliable 
extraction of minutiae. However, the texture features (Jain et al., 2000b) of the 
same fingerprint image may not be substantially affected by its poor quality. 
In this scenario, it would be prudent to give more emphasis to the matching 
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(a) (b) 

(c) 

(d) 

Figure 5.3. Feature extraction results for iris images of varying quality, (a) A good quality iris 
image, (b) A poor quality iris image (due to occlusion, motion blur and non-uniform illumina­
tion), (c) Normalized iris pattern of the good quality iris image extracted using the algorithm 
proposed by Daugman, 1999. (d) Normalized iris pattern of the poor quality iris image extracted 
using the algorithm proposed by Daugman, 1999. The iris pattern shown in (c) contains rich 
texture information. On the other hand, the left side of the iris pattern in (d) is occluded by the 
upper eyelid and the right side of the pattern is blurred. 

result of a texture-based fingerprint matcher and less emphasis on the results 
of the minutiae-based matcher. The following sections describe techniques for 
automatic assessment of image quality for iris and fingerprint images and also 
present methods for incorporating the biometric signal quality into the fusion 
process. 



148 HANDBOOK OF MULTIBIOMETRICS 

l U U 

98 

96 

- ^ 9 4 

o 
| 9 2 

Q. 

8 90 
o 
< CD 
.E 88 
:3 
c 
0) 

^ 8 6 

84 

82 

on 

^ -• " 
^ ** ** 

y 

^ • 

. - ' ' ' ' 
/ 

^ / / / / 
/ - • 

^ ' Good quality (EER = 0.01 %) 

1 Average quality (EER = 1 %) 
1 

- ! Poor quality (EER = 2.25%) -

10"' 10 
False Accept Rate (%) 

10" 10' 

Figure 5.4. Performance of a iris matcher on iris images of varying quality. 

5.2.1 Automatic quality assessment 
One of the main requirements for developing a multibiometric system that 

performs quality-based fusion is the ability to automatically extract the quahty 
information from the acquired biometric sample. A quality assessment algo­
rithm must be able to accurately determine the quality of local regions in the 
biometric sample and also provide a metric to describe the overall (global) qual­
ity of the sample. Global measures of quality can be used to decide whether the 
feature extraction and matching processes can be performed satisfactorily on 
the given biometric sample. If the global quality of the input sample is very low, 
the sample is usually rejected leading to failure to enroll or failure to capture 
events. The local quality measures help in identifying regions in the sample 
that may be ignored or given less importance compared to other regions in the 
subsequent steps of processing. We will briefly discuss the techniques that have 
been proposed in the literature for determining the image quality in fingerprint 
and iris biometric systems. 

5.2.1.1 Fingerprint image quality 
Several methods have been proposed for estimating the quality of a fingerprint 

image. Within a small region of a fingerprint image, the orientation of ridges 
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is almost constant. This is true in most of the fingerprint regions except in the 
neighborhood of the singular points. Note that singular points (core and delta 
points) are regions of high curvature in a fingerprint where the ridges change 
their directions abruptly. Hence, most of the local regions in a fingerprint image 
usually have a specific dominant direction. Figure 5.5 shows a good quality 
fingerprint image indicating the dominant ridge flow orientation in two local 
regions and the changes in the ridge directions near the core and delta points. 
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Figure 5.5. A fingerprint image showing two regions where the ridges have a fixed dominant 
orientation, and the core and delta regions where the orientation of the ridge changes abruptly. 

Bolle et al., 1999 use the directional histogram to classify local regions 
of a fingerprint image as either directional or non-directional. They divide a 
fingerprint image into blocks and compute the histogram of pixel intensities in 
each block based on the direction of the ridge pixels within that block. The size 
of each block depends on the resolution of the fingerprint image and the typical 
block size for a 500 dpi fingerprint image is 7 x 7 pixels. If the maximum value of 
the histogram is greater than a fixed threshold, the block is labeled as directional. 
Further, a relative weight is assigned to each block based on its distance from the 
centroid of the fingerprint area in the image. Since the regions near the centroid 
of the fingerprint area are likely to provide more discriminatory information 
than the peripheral regions, higher weights are assigned to the blocks near the 
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centroid. The weight, Wi, of the i^^ block centered at li = [xi^yi] is computed 
as 

f-\\k-lc\?\ . . . . 
^̂  = ^^p ( ^ — ^ — J ' (5-1) 

where Ic = [xc, yd is the location of the centroid of the fingerprint area and r is 
a normalization constant. The ratio of the total weight of the directional blocks 
to the total weight of all the blocks in the fingerprint is used as a measure of the 
overall (global) fingerprint image quality. In the same spirit, Hong et al., 1998 
use Gabor filters instead of the directional histogram to determine if the local 
regions of a fingerprint image have a clear ridge-valley structure. 

The directional nature of the ridges in a local fingerprint region can also be 
measured in terms of its coherence value. Consider a small rectangular block 
B of the fingerprint image of size bxb pixels. Let 6i — {5f, 5f) be the gradient 
vector of the gray level intensity at location i e B. The covariance of all the 
gradient vectors in the block B is given by 

ieB 

where 6f denotes the transpose of the vector 5i. Let a be the trace of the 
covariance matrix S and (3 be its determinant. The covariance matrix S is 
positive semi-definite and therefore, the two eigenvalues of S can be computed 
in terms of a and f3 as 

Al = ^ + v^a2 _ 4^ 
2 

A2 = \-yJo?- 4/3. (5.3) 

The coherence, 7, of the block B is defined in terms of Ai and A2 as 

(Al ^MY 

with 0 < 7 < L When the value of 7 of a block B is close to 1 (Ai ^ A2), it 
indicates that the ridges in the fingerprint region have a specific orientation. On 
the other hand, a value of 7 that is close to 0 (A 1 ?̂  A2) indicates the ridges do not 
have a clear direction which is mostly due to the poor quality of the fingerprint 
image in that region. Chen et al., 2005b compute the global fingerprint image 
quality as the weighted average (weights are computed using Equation 5.1) of 
the block-wise coherence measures. The block size used by Chen et al., 2005b 
is 12 X 12 pixels. Tabassi et al., 2004 present a technique for assigning a quahty 
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label to a fingerprint image based on the discriminative ability of the extracted 
minutia features. This approach assumes that the feature extraction module is 
reliable and there is a strong correlation between the quality label assigned to 
the image and the performance of the fingerprint matcher. 

Chen et al., 2005b also propose a global quality index for a fingerprint image 
that is computed in the frequency domain. Good quality fingerprint images 
have a clear ridge-valley structure and hence, most of the energy in the power 
spectrum of such images is concentrated in a narrow frequency band around the 
dominant ridge frequency. For example, consider the good quality fingerprint 
image shown in Figure 5.6(a). The power spectrum of this image shows that the 
energy is concentrated in a small frequency band (see the strong ring pattern in 
the power spectrum shown in Figure 5.6(c)) and hence, the energy distribution 
is highly peaked (see Figure 5.6(e)). In poor quality fingerprint images, the 
energy is more widely distributed in different frequency bands due to the lack 
of clear ridges and the non-uniformity of the inter-ridge spacing. This can be 
easily observed for the poor quality fingerprint image in Figure 5.6(b) which 
has a flat distribution of energy across the power spectrum (see Figures 5.6(d) 
and 5.6(f)). The entropy of the energy distribution in the power spectrum of a 
fingerprint image is used as the global quality measure by Chen et al., 2005b. 
The resulting quality measure Q is normalized linearly to lie in the range [0,1]. 

5.2.1.2 Iris image quality 

The quality of the iris images is generally affected by one of the following 
four factors (see Figure 5.7): (i) occlusion caused by the eyelashes and eyelids, 
(ii) poor focus either due to the incorrect camera settings or due to the incorrect 
interaction of the user with the camera (e.g., motion of the eye during image 
capture), (iii) non-uniform illumination and (iv) large pupil area. Techniques 
for measuring the focus of the iris images were proposed by Daugman, 2001 and 
Zhang and Salganicoff, 1999. While Daugman, 2001 proposed the use of energy 
of the high frequency components in the Fourier power spectrum to determine 
the focus, Zhang and Salganicoff, 1999 analyzed the sharpness of the pupil/iris 
boundary for measuring the focus. Ma et al., 2003 utilize the values of energy 
in the low, moderate and high frequency bands of the 2-dimensional Fourier 
power spectrum to classify the iris images based on their quality. The four 
classes considered by Ma et al., 2003 are "clear", "defocused", "blurred" and 
"occluded". However, Chen et al., 2006 argue that since the Fourier transform 
does not localize well in the spatial domain, it is not appropriate for deriving 
local quality measures. Hence, they proposed a wavelet transform-based iris 
quality measurement algorithm. 

The algorithm proposed by Chen et al., 2006 consists of the following steps. 
The given iris image is segmented into iris and non-iris regions in two stages. 
The first stage utilizes Canny edge detector and Hough transform (for detecting 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.6. Computation of the global quality index of a fingerprint image in the frequency 
domain, (a) A good quality fingerprint image, (b) A poor quality fingerprint image, (c) Power 
spectrum of the good quality fingerprint image showing a distinct dominant frequency band, 
(d) Power spectrum of the poor quality fingerprint image, (e) Energy distribution of the good 
quality fingerprint image across concentric rings in the spatial frequency domain, (f) Energy 
distribution of the poor quality fingerprint image. It can be observed that the energy distribution 
is more peaked for the good quality fingerprint image. The resulting global quality measures for 
the fingerprint images in (a) and (b) are 0.92 and 0.05, respectively. 
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(a) (b) 

(c) (d) 

Figure 5.7. Poor quality of iris images caused by (a) occlusion, (b) poor focus and eye motion, 
(c) non-uniform illumination, and (d) large pupil area. 

circles) to detect the inner and outer iris boundaries. In the second stage, the 
upper and lower eyelids are detected by using 2-dimensional wavelet decompo­
sition, Canny edge detector, and parabolic curve fitting. The detected iris and 
eye-lid boundaries for a good quality iris image and a poor quality iris image 
are shown in Figures 5.8(a) and 5.8(b), respectively. An intensity thresholding 
is applied to remove the eyelashes. Figures 5.8(c) and 5.8(d) show the extracted 
iris patterns after the removal of eyelashes. Once the iris region has been lo­
calized, a 2-dimensional isotropic Mexican hat wavelet filter (Mallet, 1998) is 
applied to the extracted pattern. The Mexican hat filter is essentially a band-
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pass filter and this filter is applied at three different scales in order to capture 
features at different scales (frequency bands). The product of the responses at 
the three scales is treated as the overall response of the filter. The quality of 
the local regions in the iris image is obtained by partitioning the iris region into 
multiple concentric (at the pupil center) windows. The width of each circular 
window is 8 pixels. Let the total number of windows be T. The energy, Et, of 
the t*̂  window is defined as 

1 ^' 

where w^^ is the i^^ wavelet response in the t^^ window (the superscript p indi­
cates that the wavelet coefficient is the product of responses at three scales), Nt 
is the total number of wavelet coefficients in the t^^ window and t = 1,2,..., T. 
Chen et al., 2006 claim that the energy Ef is a good indicator of the quality of 
the iris features and hence, it is a reliable measure of the local iris quality (high 
values of Et indicate good quality regions and vice versa). Figures 5.8(e) and 
5.8(f) show the local quality measures based on the energy concentration in the 
individual windows. Note that brighter pixel intensities in Figures 5.8(e) and 
5.8(f) indicate higher quahty. 

Chen et al., 2006 define the global quality Q of the iris image as a weighted 
average of the local quality measures. The global quality index Q is given by 

1 ^ 

where T is the total number of windows and mt is the weight assigned to each 
window. The inner regions of the iris pattern which are close to the pupil contain 
richer texture information and are less occluded by eyelashes compared to the 
outer iris regions (Sung et al., 2004). Based on this observation, Chen et al., 
2006 propose the following scheme for determining the weights m^ 

mt = e x p { - ^ } , (5.7) 

where / is the mean radius of the t^^ window from the pupil center, t = 1 , . . . , T 
and r is a normalization constant. It must be noted that this method of deter­
mining the weights assigns higher weights to windows near the pupil center. To 
account for the variations in the pupil dilation, iris size and rotation, the rubber 
sheet model (Daugman, 2001) is used to normalize the iris texture and the local 
quality measures. 
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Figure 5.8, Quality estimation for two iris images, (a) and (b) Detected iris boundaries and 
eyelids, (c) and (d) Extracted iris patterns after eyelash removal, (e) and (f) Local quality 
measures based on the energy concentration in the individual windows. The quality score for 
the good quality iris image on the left is 0.89, while the quality score for the poor quality iris 
image on the right is 0.58. 
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5.2,1.3 Margin-derived Quality 
Poh and Bengio, 2005e propose another quality index that is independent 

of the characteristics of the underlying biometric modality (fingerprint, iris or 
face) but depends only on the match score provided by the biometric matcher. 
This quality index is derived from the "margin" which addresses the following 
question: "What is the risk associated with a decision made based on the given 
match score?" Under the assumption of equal prior probabilities for the "gen­
uine" and "impostor" classes, the margin, M{s), for the given match score s is 
defined as 

M[s) = \FAR{s) - FRR{s)l (5.8) 

where FAR{s) and FRR{s) are the false accept rate and false reject rate of the 
biometric matcher, respectively, when the match score s is used as the decision 
threshold. Since both the false accept and false reject rates are cumulative 
distribution functions in the range [0,1], the margin is also bounded between 0 
and 1. Let Ae be the decision threshold corresponding to the equal error rate 
(EER). If the match score s is close to Ag, the FAR{s) and FRR{s) are almost 
equal and the margin A4{s) tends to zero. A zero value for the margin implies 
that a decision made based on the corresponding match score has 50% chance 
of being correct. On the other hand, when the match score s is further away 
from Ag, the margin tends to one. Higher the value of the margin, higher is 
the chance of making a correct decision. In this way, the margin reflects the 
quality of the match score provided by the biometric matcher. Note that the 
margin-based quality measure is specific to the biometric matcher being used 
and can be determined only after the matcher is invoked. 

5.2.2 Quality-based fusion techniques 
Biometric signal quality information can be utilized in any of the three match 

score fusion approaches, namely, density-based score fusion, transformation-
based score fusion and classifier-based score fusion described in Chapter 4. 
This section describes two techniques for incorporating quality measures into 
the match score fusion scheme. The first technique uses classifier-based score 
fusion while the second technique uses transformation-based score fusion. Be­
sides these two techniques, other methods to incorporate quality measures in 
match score fusion have also been proposed in the literature. For example. Baker 
and Maurer, 2005 adopt a hybrid (density-based and classifier-based) score fu­
sion approach in a multi-instance biometric system that uses fingerprints from 
all 10 fingers of a person. The fingerprint images are divided into five quality 
levels and the genuine and impostor score densities are estimated at each qual­
ity level. Based on the quality-dependent density estimates, a Bayesian Belief 
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Network (BBN) classifier is used to decide whether the set of input fingerprints 
come from a "genuine user" or an "impostor". 

5.2.2.1 Classifier-based fusion 

Fierrez-Aguilar et al., 2005c propose the following methodology to incor­
porate the quality of the input biometric samples into a support vector machine 
(SVM) classifier that determines the decision boundary between the genuine 
and impostor classes. Let s == [si, S 2 , . . . , SR] be the vector of match scores 
output by R biometric matchers and q = [gi, ^2, • • •, QR]^ be the vector con­
taining the corresponding quality measures of the biometric samples presented 
at the input of the R biometric matchers. Let us assume that we have N training 
samples of the form {si^q^^ yi), where si and q^ represent the R-dimensional 
match score vector and the quality vector of the i^^ training sample, respec­
tively, and yi G {—1,1} represents the corresponding class label (—1 if the 
sample belongs to the impostor class and + 1 if the sample comes from the 
genuine class). The goal is to learn the fusion function fsq {st, qt) that takes 
the match score and quality vectors {st and q^, respectively) of the test sample 
as input and generates a fused score which helps in predicting the output label 
yt as accurately as possible. 

Support vector machines are commonly used to solve many binary classifi­
cation problems (Burges, 1998). SVMs try to determine the decision boundary 
that has the largest separation from the samples of the genuine and impostor 
classes. Fierrez-Aguilar et al., 2005c use a SVM to determine an initial fusion 
function fs{s) = ws + WQ by solving the following optimization problem. 

min f^||ty||2 + Y,Z=i Ci^i) ,such that (5.9) 

a > 0,Vi, i== 1,2,...,A^. 

In Equation 5.9, 6̂  represents the training error (distance between an incor­
rectly classified training sample and the decision boundary) and Ci represents 
the cost assigned to the training error. In general, the cost Ci, i — 1 , . . . , A/', 
is assigned a positive constant C and the value of C is a tradeoff between the 
training error rate and the generalization error rate (error rate on an unknown 
set of test samples). The weight vector w = [wi^W2,..., WR] represents the 
weight assigned to each component of the match score vector s. In a multi-
biometric system, the weight vector represents the relative importance of the 
different biometric matchers, provided the scores of the matchers have been 
normalized. The above minimization problem is usually solved in its dual form 
using the kernel-trick approach (Aizerman et al., 1964). 
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The novelty in the scheme proposed by Fierrez-Aguilar et al., 2005c Ues in 
the methodology used to assign costs to the training errors. The authors argue 
that if a biometric sample is of good quality, then the cost of misclassifying this 
sample during training must be relatively high and vice versa. Hence, the cost 
Ci for each training sample is made to be proportional to the biometric signal 
quality as follows. 

where C and ai are positive constants and Qmax corresponds to the maximum 
quality score possible among all the R biometric matchers. Further, R different 
SVMs were trained by leaving out one component of vectors Si at a time, i.e., 
fs is trained using sj ^ [sn,,.., 5̂ (̂_̂ -_i), 5^^(^-+i),..., Siu]. 

During the authentication phase, the fused score provided by the SVM clas­
sifier is adaptively weighted based on the quality of each input biometric com­
ponent. Let q^ = [qti^qt2i • • •, QtB,] be the quality vector corresponding to the 
input test sample. The components of the quality vector q^ and the correspond­
ing match score vector Xt are then re-ordered such that qn < qt2 ̂  - - - ̂  qtR-
The quality-adapted fused score is then computed as. 

fs,{suqt) = P\ I ^ ^ R I , fl{sl)\+{l-(3)h{st), (5.11) 

where 70 = ( ^t? ^̂^ ) , and a2 and d are constants. The fused score com-
ij y Wmax J 

puted using Equation 5.11 is a tradeoff between ignoring and using matchers 
or modalities in which the input sample is of low quality. Experiments con­
ducted by Fierrez-Aguilar et al., 2005c on the MCYT database (Ortega-Garcia 
et al., 2003) containing fingerprint and online signature modalities show that 
the quality based fusion scheme results in a relative reduction of 20% in the 
Equal Error Rate (EER) over the case where no quality measures are used. In 
these experiments the quality scores are manually assigned to the fingerprint 
images while the quality of all the signature samples is assumed to be the same. 

5.2.2.2 Weighted sum rule fusion 
A quality-weighted sum rule for score level fusion was proposed by Fierrez-

Aguilar et al., 2006. The scores from minutiae-based and ridge-based finger­
print matchers were combined using a weighted sum rule, where the weights 
were determined based on the sensitivity of the two matchers to the quality 
of the fingerprint image. When the fingerprint image is of low quality, the 
ridge-based matcher is assigned a higher weight because it was found to be less 
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sensitive to image quality. On the other hand, when the fingerprint image is of 
good quaUty, the minutiae-based matcher was found to be more accurate and 
hence, assigned a higher weight. 

Fierrez-Aguilar et al., 2006 used transformation-based match score fusion 
after appropriate score normaUzation. The match scores from the minutiae-
based and ridge-based fingerprint matchers were normaUzed using tanh and 
double-sigmoid methods of normalization, respectively, transforming them into 
similarity scores in the range [0,1]. It was observed that the ridge-based matcher 
was more robust to image quality degradation than the minutiae-based matcher. 
Hence, the following adaptive fusion rule was proposed. 

Q f Q\ 
^q = -W^m + [l- — j Sr, (5.12) 

where Sm and Sr are the normalized match scores from the minutiae- and ridge-
based matchers, respectively, and Q is the global quality of the input fingerprint 
image computed using the algorithm proposed in Chen et al., 2005b. This fusion 
scheme relies more on the results of the ridge-based matcher when the quality of 
the fingerprint image is poor. On the other hand, the minutiae-based matcher is 
given more emphasis when the image quality is good. Experiments conducted 
on a subset of the MCYT database (Ortega-Garcia et al., 2003) containing 750 
fingers with 10 impressions per finger, indicate that the combination of minutiae 
and texture-based matchers using the quality-weighted sum rule performs better 
than the two individual matchers and also the simple sum rule (without weights) 
as shown in Figure 5.9. 

5.3 Soft biometrics 
A multimodal biometric system that utilizes a combination of biometric iden­

tifiers like face, fingerprint, hand geometry and iris is more robust to noise and 
can alleviate problems such as non-universality and lack of distinctiveness, 
thereby reducing the error rates significantly. However, using multiple traits 
will increase the enrollment and verification times, cause more inconvenience 
to the users and increase the overall cost of the system. This motivated Jain 
et al., 2004a to propose another solution to reduce the error rates of the bio­
metric system without causing any additional inconvenience to the user. Their 
solution was based on incorporating soft identifiers of human identity like gen­
der, ethnicity, height, eye color, etc. into a (primary) biometric identification 
system. Figure 5.10 depicts a scenario where both primary (face) and soft (gen­
der, ethnicity, height and eye color) biometric information can be automatically 
extracted and utilized to verify a user's identity. In this scenario, the height of 
the user can be estimated as he approaches the camera and his gender, ethnicity 
and eye color can be estimated from his face image. These additional attributes 
can be used along with the face biometric to accurately identify the person. 
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Figure 5.9. DET plot demonstrating the improvement in the verification performance due to 
the quality-weighted sum rule. 

Height: 5.9 f=t. 

Eye color: Black 

Gender: Male 

Ethnicity: Asian 

Face features: LDA Coefficients 

Identity: Unsang 

Figure 5.10. A scenario where the primary biometric identifier (face) and the soft biometric 
attributes (gender, ethnicity, eye color and height) are automatically extracted and utilized to 
verify a person's identity. 
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5.3.1 Motivation and challenges 
Soft biometric information is utilized in Automated Fingerprint Identification 

Systems (AFIS) used in the forensic community. For example, the fingerprint 
card used by the Federal Bureau of Investigation (FBI) includes information 
on the gender, ethnicity, height, weight, eye color and hair color of the person 
along with the prints of all ten fingers (see Figure 5.11). However, in AFIS, the 
soft biometric information is determined manually and is not utilized during 
the automatic fingerprint matching phase. 
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Figure 5.11. A sample FBI fingerprint card (ht tp: / /www.highered.nysed.gov/tcert / 
ospra/sainplefpcard.html). Information on the gender, ethnicity, height, weight, eye color 
and hair color of the person is included in the encircled region. 

The usefulness of soft biometric traits in improving the performance of the 
primary biometric system can be illustrated by the following example. Consider 
three users A (1.8m tall, male), B (1.7m tall, female), and C (1.6m tall, male) 
who are enrolled in a fingerprint biometric system that works in the identification 
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mode. Suppose user A presents his fingerprint sample X to the system. It is 
compared to the templates of all the three users stored in the database and 
the posteriori matching probabilities of all the three users given the sample X 
are calculated. Let us assume that the outputs of the fingerprint matcher are 
P{A\X) = 0.42, P{B\X) = 0.43, and P{C\X) = 0.15. In this case, user 
A will be falsely identified as user B based on the Bayesian decision rule. 
On the other hand, let us assume that as the user approaches the fingerprint 
sensor, there exists a secondary system that automatically identifies the gender 
of the user as male and measures the user's height as 1.78m. If we have this 
information in addition to the posteriori matching probabilities given by the 
fingerprint matcher, then a proper combination of these sources of information 
is likely to lead to a correct identification of the user as user A. 

The first biometric system developed by Alphonse Bertillon in 1883 used 
anthropometric features such as the length and breadth of the head and the 
ear, length of the middle finger and foot, height, etc. along with attributes 
like eye color, scars, and tatoo marks for ascertaining a person's identity ( 
Bertillon, 1896). These measurements were obtained manually by Bertillon. 
Although each individual measurement in the Bertillonage system may exhibit 
some (intra-class) variability, a combination of several quantized (or binned) 
measurements was sufficient to manually identify a person with reasonable 
accuracy. The Bertillon system was dropped in favor of the Henry's system of 
fingerprint identification over 100 years back due to three main reasons: (i) lack 
of persistence - the anthropometric features (e.g., height) can vary significantly 
for juveniles; (ii) lack of distinctiveness - features such as skin color or eye color 
cannot be used for distinguishing between individuals coming from a similar 
ethnic background; and (iii) the huge time, effort and training required to get 
reliable measurements. 

Like the Bertillon system, Heckathorn et al., 2001 use attributes like gen­
der, race, eye color, height, and other visible marks like scars and tattoos to 
recognize individuals for the purpose of welfare distribution. More recently, 
Aillisto et al., 2004 show that unobtrusive user identification can be performed 
in low security applications such as access to health clubs using a combination of 
"light" biometric identifiers like height, weight, and body fat percentage. While 
the biometric features used in the above mentioned systems provide some in­
formation about the identity of the user, they are not sufficient for accurately 
identifying the user. Hence, these attributes can be referred to as "soft biometric 
traits". The soft biometric information complements the identity information 
provided by traditional (primary) biometric identifiers such as fingerprint, iris, 
and voice. In other words, utilizing soft biometric traits can improve the recog­
nition accuracy of primary biometric systems. 

Wayman, 2000 proposed the use of soft biometric traits like gender and age, 
for filtering a large biometric database. Filtering refers to limiting the number 
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of entries in a database to be searched, based on some characteristics of the user 
who needs to be identified. For example, if the user can somehow be identified 
as a middle-aged tall male, the search can be restricted only to the subjects with 
this profile enrolled in the database. Of course, the assumption is that the entries 
in the database are appropriately tagged with these attributes. Filtering greatly 
improves the speed or the search efficiency of the biometric system. In addition 
to filtering, the soft biometric traits can also be used for tuning the parameters of 
the biometric system. Several studies (Givens et al., 2004; Newham, 1995) show 
that factors such as age, gender, race, and occupation can affect the performance 
of a biometric system. For example, a young female Asian who works in a 
mine is considered as one of the most difficult subject for a fingerprint system 
(Newham, 1995) because the ridges in her fingerprints are worn-out. This 
provides the motivation for tuning the system parameters like threshold on the 
match score in a unimodal biometric system, and thresholds and weights of the 
different modalities in a multimodal biometric system to obtain the optimum 
performance for a particular user or a class of users. However, filtering and 
system parameter tuning require that highly accurate automatic soft biometric 
feature extractors are available. 

Two key challenges need to be addressed in order to incorporate the soft 
biometric information into the traditional biometric framework. The first chal­
lenge is the automatic and reliable extraction of soft biometric information in a 
non-intrusive manner without causing any inconvenience to the users. It must 
be noted that the failure of Bertillon-like systems was caused by the unreliabil­
ity and inconvenience in the manual extraction of these features. Once the soft 
biometric information about a user is available, the challenge is to optimally 
combine this information with the primary biometric identifier so that the over­
all recognition accuracy is enhanced. Jain et al., 2004a developed a Bayesian 
framework for integrating the primary and soft biometric features. 

5.3.2 Automatic soft biometric feature extraction 
Any trait that provides some information about the identity of a person, but 

does not provide sufficient evidence to precisely determine the identity can 
be referred to as soft biometric trait. Figure 5.12 shows some examples of 
soft biometric traits. Soft biometric traits are available and can be extracted 
in a number of practical biometric applications. For example, attributes like 
gender, ethnicity, age, eye color, skin color, and other distinguishing physical 
marks such as scars can be extracted with sufficient reliability from the face 
images. The pattern class of fingerprint images (right loop, left loop, whorl, 
arch, etc.) is another example of a soft trait. Gender (Parris and Carey, 1996), 
speech accent (Hansen and Arslan, 1995), and perceptual age (Minematsu et al., 
2003) of the speaker can be inferred from the speech signal. Eye color can be 
estimated from iris images. However, automatic and reliable extraction of soft 
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Figure 5.12. Examples of soft biometric traits. 

biometric traits is a difficult task. In this section, we present a brief survey 
of the techniques that have been proposed in the Uterature for extracting soft 
biometric information and describe the system developed by Jain et al., 2004a 
for determining height, gender, ethnicity, and eye color. 

Several researchers have attempted to derive gender, ethnicity, and pose in­
formation from the face images. Gutta et al., 2000 propose a mixture of experts 
consisting of ensembles of radial basis functions for the classification of gender, 
ethnic origin, and pose of human faces. Their gender classifier (male vs female) 
had an accuracy of 96%, while the ethnicity classifier (Caucasian, South Asian, 
East Asian, and African) had an accuracy of 92%. These results were reported 
on approximately 3000 good quality frontal face images corresponding to about 
1000 subjects from the FERET database. Based on the same database, Moghad-
dam and Yang, 2002 show that the error rate for gender classification can be 
reduced to 3.4% by using non-linear support vector machines. Shakhnarovich 
et al., 2002 develop a demographic classification scheme that extracts faces 
from unconstrained video sequences and classifies them based on gender and 
ethnicity. The learning and feature selection modules uses a variant of the Ad-
aBoost algorithm. Even under unconstrained environments, they show that a 
classification accuracy of more than 75% can be achieved for both gender and 
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ethnicity (Asian vs non-Asian) classification on a database consisting of 30 
subjects. For this database, the SVM classifier of Moghaddam and Yang also 
had a similar classification performance and there was also a noticeable bias 
toward males in the gender classification (females had an error rate of 28%). 
Balci and Atalay, 2002 report a classification accuracy of more than 86% for a 
gender classifier that uses PCA for feature extraction and multilayer perceptron 
for classification. Lu and Jain, 2004 propose a Linear Discriminant Analysis 
(LDA) based scheme to address the problem of ethnicity identification from fa­
cial images. The users are identified as either Asian or non-Asian by applying 
multiscale analysis to the input facial images. An ensemble framework based 
on the product rule is used for integrating the LDA analysis at different scales. 
This scheme had an accuracy of 96.3% on a database of 263 subjects (with 
approximately equal number of males and females). 

Automatic age determination is a more difficult problem than gender and 
ethnicity classification. Kwon and Lobo, 1994 present an algorithm for age 
classification from facial images based on cranio-facial changes in feature-
position ratios and skin wrinkle analysis. They attempted to classify users as 
"babies", "young adults", or "senior adults". However, they did not provide any 
classification accuracy. More recently, Lanitis et al., 2004 perform a quantita­
tive evaluation of the performance of various classifiers developed for the task 
of automatic age estimation from face images. All the classifiers used eigen-
faces obtained using Principal Component Analysis (PCA) as the input features. 
Quadratic classifier, minimum distance classifier, neural network classifier, and 
hierarchical classifier were used for estimating the age. The best age estimation 
algorithm had an average absolute error of 3.82 years which was comparable to 
the error made by humans (3.64 years) in performing the same task. Minematsu 
et al., 2003 show that the perceptual age of a speaker can be automatically es­
timated from voice samples. These results indicate that while automatic age 
estimation is possible from biometric traits, the current algorithms are not very 
reliable. 

The weight of a user can be measured by asking him to stand on a weight 
sensor while he is providing his primary biometric. The height of a person can 
be estimated from a real-time sequence of images as the user approaches the 
biometric system. For example, Kim et al., 2002 use geometric features like 
vanishing points and vanishing lines to compute the height of an object. Jain 
et al., 2004a implemented a real-time vision system for automatic extraction 
of gender, ethnicity, height, and eye color. The system was designed to extract 
the soft biometric attributes as the person approaches the primary biometric 
system to present his primary biometric identifier (face and fingerprint). Their 
soft biometric system is equipped with two pan/tilt/zoom cameras. Camera I 
monitors the scene for any human presence based on the motion segmentation 
image. Once camera I detects an approaching person, it measures the height 
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of the person and then guides camera II to focus on the person's face. It is 
reasonable to beUeve that the techniques for automatic soft biometric feature 
extraction would become more reliable and commonplace in the near future. 

5.3J Fusion of primary and soft biometric information 
A biometric system can operate either in identification mode or verification 

mode. Jain et al., 2004a present a Bayesian framework for fusion of soft and 
primary biometric information under both these modes of operation. The main 
advantage of this framework is that it does not require the soft biometric feature 
extractors to be perfect (100% accurate). 

Identification mode: For a biometric system operating in the identification 
mode, the framework for integrating primary and soft biometric information 
is shown in Figure 5.13. Let us assume that the primary biometric system 
is based on Rp, Rp > 1 biometric identifiers like fingerprint, face, iris and 
hand geometry. Further, the soft biometric system is based on Rs, Rs > 1 
attributes like age, gender, ethnicity, eye color and height. Let a;i,a;2, • •, ^M 
represent the M users enrolled in the database. Let x = [a^i, X2, . . . , XR^^] 
be the collection of primary biometric feature vectors. Let p{xj\u;k) be the 
likelihood of observing the primary biometric feature vector Xj given the user 
is cj/e. If the output of each individual modality in the primary biometric system 
is a set of match scores, s^ = [si^ki^2,k^ • • • iSRp,k]y one can approximate 
p{xj\u;k) by p{sj\ujk), provided the genuine match score distribution of each 
modality is known. 

Let y — [7/1,̂ 2) •• • 'iVRs] be the soft biometric feature vector, where, for 
example, yi could be the gender, ^2 could be the eye color, etc. We require 
an estimate of the posteriori probability of user uok given both x and y. This 
posteriori probability can be calculated by applying the Bayes rule as follows: 

Pi^^,\:c,y)^^±^yM^. (5.13) 

If all the users are equally likely to access the system, then P{uJk) = j^^ y k. 
Further, if we assume that all the primary biometric feature vectors xi^.,. ^XR^ 
and all the soft biometric variables yi, ^2, • • •, URS are statistically independent 
of each other given the user's identity cj^, the posteriori probability in Equation 
5.13 can be expressed in terms of the product of the likeHhoods as follows. 

^P Rs 

P{uJk\x,y) = fjKajjIcjfc) fJp(^rMfc)- (5.14) 
j = l r=l 
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Figure 5.13. Framework for fusion of primary and soft biometric information. Here x is the 
primary (fingerprint) feature vector and y is the soft biometric feature vector. 

The logarithm of the posteriori probability can be considered as the discrim­
inant function, gk{x^ y), for user o;/̂ , which is given by 

Rj) Rs 

9k [x,y) = ^logp{xj\u;k) + '^logp{yr\u;k)^ (5.15) 
j - i r=l 

During the identification phase, the input biometric sample is compared with 
the templates of all the M users enrolled in the database and the discriminant 
functions ^ i , . . . , ^M are computed. The test user is identified as that user with 
the largest value of discriminant function among all the enrolled users. 

Verification mode: A biometric system operating in the verification mode 
classifies each authentication attempt as either "genuine" or "impostor". In the 
case of verification, the Bayesian decision rule can be expressed as 

P{genuine\x^y) 
P {impostor \x ^ y] 

>r], (5.16) 
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where rj is the decision threshold. Increasing 77 reduces the false accept rate 
and simultaneously increases the false reject rate and vice versa. If the prior 
probabilities of the genuine and impostor classes are equal, and if we assume 
that all the primary biometric feature vectors and all the soft biometric attributes 
are independent of each other, the ratio of the posteriori probabilities in Equation 
5.16 can be expressed in terms of the product of the likelihood ratios as follows. 

n"" f p{xj\genuine) \ j -y P{genuine\x^y) x-j f p{xj\genuine) \ j -y f p{yr\genuine) 

P{impostor\x^y) \^ \p{xj\impostor) J ^J: \p{yr\impostor] 

(5.17) 
The logarithm of the posteriori probability ratio can be considered as the 

discriminant function, g{x^ y), which is given by 

Y ^ i f p{xj\genuine) \ ^ A f p{yj>\genuine) 

^-^ \p(xj\impostor) J ^-^ \p(yr\impostor) 

(5.18) 
The input biometric sample is assigned to the "genuine" class if ^(a: ,̂ y) > rj. If 
the output of each individual modality in the primary biometric system is a set of 
match scores, s = [si, 5 2 , . . . , SR^], one can approximate p{xj\genuine) and 
p{xj \impostor) hy p{sj \genuine) andp{sj | impostor) , respectively, provided 
the genuine and impostor match score distributions of each modality are known. 

Computation of soft biometric likelihoods: A simple method for computing 
the soft biometric likelihoods p{yr\uJk)^'^ = 1 ,2, . . . , i?^, fc = 1 ,2 , . . . , M is 
to estimate them based on the accuracy of the available soft biometric feature 
extractors. For example, if the accuracy of the gender classifier is a, we can 
estimate the likelihood for the gender attribute as 

1 P(observed gender is male | t rue gender of the user is male) = a, 

2 P(observed gender is female | true gender of the user is female) = a, 

3 P(observed gender is male | true gender of the user is female) = l — a, 

4 P(observed gender is female | true gender of the user is male) = l — a. 

Similarly, if the average error made by the system in measuring the height of a 
person is /ig and the standard deviation of the error is ag, then it is reasonable to 
assume that ^(measured height jc^k) follows a Gaussian distribution with mean 
ih{ujk) + Me) and standard deviation ae, where h{ujk) is the true height of user 
LUk- When the error in height measurement (characterized by the parameters /ig 
and (jg) is small, the distribution of the measured height of a person is highly 
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peaked around the true height of the person. As a result, the measured height 
can provide better discrimination between the users enrolled in the database. On 
the other hand, if the standard deviation of the height measurement error, o-g, is 
large, the measured height tends to follow a uniform distribution. Consequently, 
the measured height does not provide much discrimination between the enrolled 
users. 

There is a potential problem when the likelihoods are estimated only based on 
the accuracy of the soft biometric feature extractors. The discriminant function 
in Equation 5.15 is dominated by the soft biometric terms due to the large 
dynamic range of the soft biometric log-likelihood values. For example, if the 
gender classifier is 98% accurate (a = 0.98), the log-likelihood for the gender 
term in Equation 5.15 is -0.02 if the classification is correct and -3.91 in the 
case of a misclassification. This large difference in the log-likelihood values is 
due to the large variance of the soft biometric feature values compared to the 
primary biometric feature values. To offset this phenomenon, Jain et al., 2004a 
introduced a scaling factor /?, 0 < /? < 1, to flatten the likelihood distribution 
of each soft biometric trait. If q^^k is an estimate of the likelihood p{yr\(^k) 
based on the accuracy of the feature extractor for the r^^ soft biometric trait, 
the weighted likelihood p{yr\^k) is computed as. 

PiVrH) = ^'^":'' 0^, (5.19) 

where Y^ is the set of all possible values of the discrete soft biometric variable 
Hr and f3r is the weight assigned to the r̂ ^ soft biometric trait. If the feature t/r is 
continuous with standard deviation a^, the likelihood can be scaled by replacing 
ar with ar/Pr- This weighted likelihood approach is commonly used in the 
speech recognition community in the context of estimating the word posterior 
probabilities using both acoustic and language models. In this scenario, weights 
are generally used to scale down the probabilities obtained from the acoustic 
model (Wessel et al., 2001). 

The above method of likelihood computation also has other implicit advan­
tages. An impostor can easily circumvent the soft biometric feature extraction 
because it is relatively easy to modify/hide one's soft biometric attributes by 
applying cosmetics and wearing other accessories (Uke mask, shoes with high 
heels, etc.). In this scenario, the scaling factor f3r can act as a measure of the 
reliability of the r^^ soft biometric feature and its value can be set depending 
on the environment in which the system operates. If the environment is hos­
tile (where many users are trying to circumvent the system), the value of (3r 
can be set close to 0. Finally, the discriminant function given in equation 5.15 
is optimal only if the assumption of independence between all the biometric 
traits is true. If there is any dependence between the features, the discriminant 
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function is sub-optimal. In this case, appropriate selection of the weights f3r, 
r = 1 , . . . , /Zs, during training can result in better recognition rates. 

5.3,4 Performance gain using soft biometrics 
Experiments by Jain et al., 2004a demonstrated the benefits of utilizing the 

gender, ethnicity, and height information of the user in addition to the face and 
fingerprint biometric identifiers. A subset of the Joint Multibiometric Database 
(JMD) collected at West Virginia University was used in their experiments. The 
selected database contained 4 face images and 4 impressions of the left index 
finger obtained from 263 users over a period of six months. The LDA-based 
classifier proposed in Lu and Jain, 2004 was used for gender and ethnicity clas­
sification of each user. The accuracy of the ethnicity classifier for the problem 
of classifying the users in the JMD as "Asian" and "Non-Asian" was 96.3%. 
The accuracy of the gender classifier on the JMD was 89.6%. When the reject 
rate was fixed at 25%, the accuracy of the ethnicity and gender classifiers were 
99% and 98%, respectively. In cases where the ethnicity or the gender classifier 
made a reject decision on a user, the corresponding information is not utilized 
for updating the discriminant function, i.e., if the label assigned to the r*^ soft 
biometric trait is "reject", then the log-likelihood term corresponding to the r^^ 
feature in Equation 5.18 is set to zero. Further, during the collection of data 
in the JMD, the approximate height of each user was recorded during the first 
acquisition. However, no real-time height measurement was performed during 
subsequent biometric data acquisitions. Hence, Jain et al., 2004a simulated val­
ues for the measured height of user cuk (at the verification time), k = 1, • • •, 263 
from a normal distribution with mean h{u;k) + /ie and standard deviation (Je, 
where h{u;k) is the true height of user cuk recorded during the database collec­
tion, /ie = 2 cm and cTg = 5 cm. Here, fie and ae are the average and standard 
deviation of the height measurement error and the values of these two parame­
ters were estimated based on the errors observed using the height measurement 
system developed by Jain et al., 2004a. 

Figure 5.14(a) depicts the performance gain obtained when the soft biometric 
identifiers were used along with both face and fingerprint modalities in the 
identification mode. We can observe that the rank-one recognition rate of 
the multimodal biometric system based on face and fingerprint modalities is 
approximately 97% (rank-one error rate is 3%) and the addition of soft biometric 
information improves the rank-one accuracy by about 1% (rank-one error rate 
is now 2%). Although the absolute improvement in the rank-one accuracy due 
to the additional soft biometric information is small, it must be noted that the 
relative reduction in the rank-one error rate is about 33%, which is significant. 

In the verification mode, the improvement in GAR after incorporating soft 
biometric information over the multimodal system is about 2% at 0.001% FAR 
(see Figure 5.14(b)). This improvement is quite significant given that the GAR 
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Figure 5.14. Improvement in the performance of a multimodal (face and fingerprint) system 
after addition of soft biometric traits, (a) Identification and (b) Verification mode. 
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of the multimodal (face and fingerprint) biometric system at this operating point 
is already very high (the false reject rate at this operating point is reduced from 
11% to 9% which is a relative improvement of approximately 20%). 

5,4 Summary 
In addition to the match scores provided by the biometric matchers, ancillary 

information may also be available to a multibiometric system depending on the 
application scenario. Biometric signal quality and soft biometric information 
are two examples of such additional information that can be utilized to improve 
the accuracy of a multibiometric system. While biometric signal quality does 
not explicitly contain any information about the identity of the user, different 
biometric matchers exhibit different levels of sensitivity to the quality of the 
acquired biometric sample. This phenomenon can be exploited in a multibio­
metric system where the match scores or the identity decisions of the matchers 
can be appropriately weighted during fusion based on the quality of the input 
biometric sample. Soft biometric characteristics like gender, ethnicity, height 
and weight directly provide information about the identity of the user. Although 
the soft biometric information alone is not sufficient for accurate person recog­
nition, they can be used to complement the information provided by the primary 
biometric identifiers like fingerprint, iris and face. Techniques for automatically 
extracting soft biometric information and estimating biometric signal quality 
have been incorporated into biometric systems only recently. Hence, fusion 
schemes that incorporate such ancillary information have not been thoroughly 
explored and there is plenty of scope for conducting more in-depth research in 
this area. 



Appendix A 
Evaluation of multibiometric systems 

A.l Biometric system evaluation 
Evaluation of a complete biometric system is a complex and challenging task that requires 

experts from a variety of fields, including statistics, computer science, engineering, business, 
psychology and law enforcement. In order to gain a thorough understanding of the performance 
of a biometric system, one must address the following questions. 

1 What is the error rate of the biometric system in a given application? (matching or technical 
performance) 

2 What is the reliability, availability and maintainability of the system? (engineering perfor­
mance) 

3 What are the vulnerabilities of the biometric system? What level of security does the bio­
metric system provide to the application in which it is embedded? (security of the biometric 
system) 

4 What is the user acceptability of the system? How does the system address human factor 
issues like habituation and privacy concerns? (user concerns) 

5 What is the cost and throughput of the biometric system and what tangible benefits can be 
derived from its deployment? (return on investment) 

In order to fully evaluate a biometric system, one must also consider the existing security 
solutions in the application domain where the biometric system will be embedded. No existing 
biometric evaluation framework addresses all the above questions in a systematic manner. In 
this appendix, we focus only on the matching performance of a biometric system. 

Phillips et al., 2000a have proposed a general framework for evaluating the matching per­
formance of a biometric system. Ideally, the evaluation requires an independent third party to 
design, administer and analyze the test. Phillips et al., 2000a divide the matching performance 
evaluation of a biometric system into three stages: 

1 Technology evaluation: Technology evaluation compares competing algorithms from a 
single technology on a standardized database. The Fingerprint Verification Competitions 
(FVC) (Maio et al., 2004), the Fingerprint Vendor Technology Evaluation (FpVTE) (Wilson 
et al., 2004), the Face Recognition Vendor Tests (FRVT) (Phillips et al., 2003), the Face 
Recognition Technology (FERET) program (Phillips et al., 2000b) and the NIST Speaker 
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Recognition Evaluations (SRE) (Przybocki and Martin, 2004) are examples of biometric 
technology evaluations. Since the database is fixed, the technology evaluation results are 
repeatable. However, characteristics of the database such as data collection environment, 
sample population and user habituation will affect the performance of the algorithms. Hence, 
care must be taken to ensure that the database is neither too hard nor too easy. If the database 
is too easy (i.e., it includes only good quality biometric samples with small intra-class 
variations), the error rates will be close to zero and it will be very difficult to distinguish 
between the competing systems. On the other hand, if the database is too challenging (i.e., it 
includes only poor quality biometric samples with large intra-class variations), the evaluation 
may be beyond the capabilities of existing technologies, thereby rendering the evaluation 
useless. Ideally, a database should include samples that are representative of the population 
and it must allow us to distinguish between the performance of competing algorithms and 
determine their strengths and limitations. 

2 Scenario evaluation: In scenario evaluation, the testing of the prototype biometric systems 
is carried out in an environment that closely resembles the real-world application. Since 
each system will acquire its own biometric data, care must be taken to ensure uniformity in 
the environmental conditions and sample population across the different prototype systems. 

3 Operational evaluation: Operational evaluation is used to ascertain the performance of 
a complete biometric system in a specific application environment with a specific target 
population. 

Mansfield and Wayman, 2002 identify the best practices to be followed when evaluating 
the technical performance of a biometric system. They make recommendations on a number 
of testing issues, including size of the test, volunteer selection, factors that may affect the 
performance of a biometric system, data collection methodology, estimation of the performance 
metrics, estimating the uncertainty of performance metrics and reporting the performance results. 
They also note that since their recommendations are general in nature, it may not be possible 
to follow them completely in any practical biometric system evaluation. A sound evaluation of 
the technical performance of a biometric system must follow the best practices recommended 
by Mansfield and Wayman, 2002 as closely as possible and clearly explain any deviations from 
these recommendations that may be necessary. 

A.2 Issues in multibiometric system evaluation 
Evaluation of the matching performance of a multibiometric system is similar to the evaluation 

of a unibiometric system except for a few issues that are unique to a multibiometric system. One 
of the main differences between the evaluation of unimodal and multimodal biometric systems 
is the nature of the database used. The performance metrics of a biometric system such as 
accuracy, throughput, and scalability can be estimated with a high degree of confidence only 
when the system is tested on a large representative database. For example, face (Phillips et al., 
2003) and fingerprint (Wilson et al., 2004) recognition systems have been evaluated on large 
databases (containing samples from more than 25,000 individuals) obtained from a diverse 
population under a variety of environmental conditions. In contrast, current multimodal systems 
have been tested only on small databases containing fewer than 1, 000 individuals. This is mainly 
due to the absence of legacy multimodal databases and the cost and effort involved in collecting 
a large multimodal biometric database. 

Multimodal biometric databases can be either true or virtual. In a true multimodal database 
(e.g., XM2VTS database (Messer et al., 1999)), different biometric cues are collected from the 
same individual. Virtual multimodal databases contain records which are created by consistently 
pairing a user from one unimodal database (e.g., face) with a user from another database (e.g.. 
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fingerprint). The creation of virtual users is based on the assumption that different biometric 
traits of the same person are independent. While this assumption of independence of the various 
modalities has not been thoroughly investigated, large virtual multimodal databases are easy to 
construct assuming that large unimodal databases are available. Indovina et al., 2003 attempt 
to validate the use of virtual subjects by randomly creating 1,000 sets of virtual users with 
face and fingerprint modalities. The performance of the multimodal biometric system for the 
1,000 virtual user sets is shown in Figure A.l, which indicates that the variation in matching 
performance among these virtual user sets is not significant. The clustering of these ROC curves 
seems to support the independence assumption between the face and fingerprint modalities, 
thereby validating the use of virtual subjects. Garcia-Salicetti et al., 2005 also report similar 
results for experiments on a subset of the BIOMET multimodal database (Garcia-Salicetti et al., 
2003). However, experiments by Poh and Bengio, 2005c seem to indicate that the recognition 
perforaiance of a multimodal biometric system evaluated on a virtual multimodal database is 
significantly different from the results obtained on a true multimodal database. Hence, the issue 
of using virtual versus true multimodal databases to evaluate the performance of a multibiometric 
system needs further investigation. 

100 

5? 98 

False Accept Rate (%) 

Figure A.l. ROC curves of the multimodal (face and fingerprint) biometric system for the 
1, 000 virtual user sets randomly created by Indovina et al., 2003. The variation in matching 
performance among these virtual user sets is not significant which seems to validate the use of 
virtual users. 

Another issue unique to multibiometric system evaluation is the testing of a cascaded multi­
biometric system, where multiple sources of biometric information are processed in a sequential 
order (see Chapter 2 for more details). The cascading scheme can improve user convenience as 
well as allow fast and efficient searches in large scale identification tasks. Further, a hierarchical 
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processing architecture (mixture of cascade and parallel processing sequences) is also possible 
in a multibiometric system. Evaluation of cascaded or hierarchical multibiometric systems is 
more complex because of the trade-off between user convenience and security offered by such 
systems. Standard protocols are not available to evaluate cascaded or hierarchical multibiometric 
systems. 

A.3 Multimodal biometric databases 
A good multimodal biometric database must be representative of the population and each 

biometric trait must preferably exhibit realistic intra-class variations (achieved by collecting data 
over multiple sessions spread over a period of time and in different environmental conditions). 
One must also carefully decide which biometric traits and sensors to use and how many samples 
per user per trait needs to be collected. Further, due to the involvement of human subjects, legal 
and privacy issues must also be considered and approval of organizations like the Institutional 
Review Board (IRB) is mandatory in many countries (Penslar, 1993). This makes the collection 
of a true multimodal biometric database a time consuming and complicated process. In this 
section, we introduce some of the multimodal biometric databases that are available in the 
public domain. The following eight databases are true multimodal databases collected at various 
universities and research laboratories around the world. 

1 BT-DAVID (British Telecom Laboratories - Digital Audio-Visual Integrated Database): 
BT-DAVID (Mason et al., 1996) is abimodal audio-visual database, which contains synchro­
nized video and audio data obtained from more than 100 subjects. Of these 100 subjects, 
data from 30 subjects was recorded on five sessions spaced over several months. The video 
recordings include frontal and profile views of the subject's face with different illumination 
conditions and background scenes. The audio samples correspond to different utterances, 
including the English digit set, English alphabet E-set and vowel-consonant-vowel phrases. 
Portions of this database also include lip highlighting. Apart from its use in the develop­
ment of biometric (audio-visual speaker recognition) algorithms, the BT-DAVID database 
can also be used to study a variety of research themes such as facial image segmentation 
in video, audio-visual speech recognition, speech-assisted video coding and synthesis of 
talking heads. 

2 M2VTS (Multi Modal Verification for Teleservices and Security applications) database: 
The M2VTS database (Pigeon and Vandendrope, 1996) is another bimodal audio-visual 
database consisting of synchronized video and audio data of 37 subjects. This database 
contains five shots for each subject recorded at one week intervals in ideal conditions (good 
picture quality, indoor environment, nearly uniform illumination and uniform background). 
During each shot, the subject utters the digits '0' to '9' in his/her native language (mostly 
French) and rotates the head by 90 degrees towards the left and the right. 

3 XM2VTS (Extended Multi Modal Verification for Teleservices and Security applica­
tions) database: The XM2VTS database (Messer et al., 1999) is a bimodal biometric 
database with face and voice modalities. It consists of synchronized video and audio data as 
well as image sequences corresponding to multiple views of the subject's face. This database 
has video and speech recordings of 295 subjects collected over a period of four months. The 
recordings were carried out in four sessions at one month intervals with two recordings of 
the subject in each session. Uniform illumination and a plain blue background were used 
during the recording. The subject was asked to read three sentences (two digit sequences 
along with a phonetically balanced sentence) and a video of the frontal face was recorded as 
the subject reads the sentences. Subsequently, the subject was asked to rotate his/her head 
from the center to the left, right, up and down before finally returning to the center. Based 
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on the XM2VTS database, Poh and Bengio, 2005a have developed a benchmark database 
of match scores that can be used to compare different score level fusion techniques. Eight 
baseline biometric matchers (five for face and three for voice) were used to generate the 
match scores in the benchmark database. 

4 BANCA database: The BANCA database (Bailly-Bailliere et al, 2003) is a challenging 
bimodal audio-visual database recorded in three different scenarios, namely, controlled, 
degraded and adverse. Audio and video data from 208 subjects was obtained over a period 
of three months. For each of the four different native languages (English, French, Italian and 
Spanish), video and speech data were collected from 52 subjects over 12 sessions. In the first 
four sessions, the video was recorded in controlled conditions using a high quality digital 
camera with uniform illumination and plain background. The next four sessions correspond 
to the degraded scenario where the video was recorded using an analog web camera. The 
final four sessions were recorded in adverse conditions using the high quality digital camera 
with changes in illumination and complex background scenes. In each of the 12 sessions, 
the subject was prompted to say a random 12 digit number, his/her name, address and date of 
birth. The audio data was recorded using both a low quality and a high quality microphone. 

5 BIOMET multimodal database: The BIOMET multimodal database has five biomet­
ric modalities, namely, face, voice, fingerprint, hand image and online-signature (Garcia-
Salicetti et al., 2003). This database was collected in three different sessions with three and 
five months spacing between them. The number of subjects in the three sessions was 130, 
106 and 91. The face database includes video recordings of the frontal and profile views of 
the face, the frontal face images of the subject captured using an active differential imaging 
device (referred to as "Infrared Camera device" in Garcia-Salicetti et al., 2003) and facial 
surface data captured using a 3D acquisition system. The video recordings also have syn­
chronized audio recordings of the subject pronouncing his/her identification number, digits 
0 to 9, "oui", "non", and 12 phonetically balanced sentences in French. Two-dimensional 
images of the subject's left hand were captured using a scanner. The x and y coordinates 
(over time) of the subject's signature were recorded at a rate of 200 Hz using a digitizing 
tablet. Along with the x and y coordinates, the pressure applied on the writing device, the 
azimuth and the altitude of the pen were also recorded. Optical and capacitive fingerprint 
sensors were used to capture images of the index and middle fingers of the subject's right 
hand. 

6 MC YT (Ministerio de Ciencia y Tecnologia, Spanish Ministry of Science and Technol­
ogy) baseline corpus: The MCYT bimodal database (Ortega-Garcia et al., 2003) has face 
and signature biometric modalities collected from 330 subjects. Fingerprint images of all 10 
fingers were collected using both optical and capacitive sensors. Twelve impressions were 
collected for each finger on both the sensors. In the case of signature modality, 25 samples 
were collected for each subject. Further, for each subject 25 highly-skilled forgeries were 
obtained. Both online signature information such as the trajectory (x and y coordinates) 
of the pen, pen pressure and pen azimuth/altitude and offline information (image of the 
signature) are stored in the database. 

7 UND (University of Notre Dame) biometric database: The UND biometric database ( 
Flynn et al., 2005) is a collection of several small multimodal databases with face and ear 
modalities. Since the images in this database were captured using cameras operating in the 
visible and infra-red spectral regions and a 3D range scanner, this database can also be used 
for the design and evaluation of multi-sensor biometric systems. The number of subjects in 
this database varies from 80 to 350. A subset of the UND biometric database has been used 
in the Face Recognition Grand Challenge (FRGC) experiments (Phillips et al., 2005). The 
FRGC database includes high resolution 2D still face images obtained in controlled (studio 
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setting) and uncontrolled (e.g., hallways and outdoors) illumination conditions as well as 
3D face images obtained using a range scanner. 

8 NIST BSSRl (Biometric Scores Set - Release 1): The NIST BSSRl (National Institute 
of Standards and Technology, 2004) is a multimodal biometric match score database. The 
NIST BSSRl consists of fingerprint and face match scores of 517 subjects. Note that face 
and fingerprint images of the subject are not available. One fingerprint score was obtained 
by comparing a pair of impressions of the left index finger and another score was obtained 
by comparing impressions of the right index finger. Two different face matchers (referred to 
as ' C and 'G') were applied to compute the similarity between two frontal face images. So, 
there are four match scores for each subject (one for each modality). Although the number 
of subjects in the NIST BSSRl is the largest among all the public-domain true multimodal 
biometric databases, there are only two samples per subject. Thus, only a single genuine 
match score is available for a subject in each modality. 

Apart from the eight multimodal biometric databases described above, several unimodal 
biometric databases are also available in the public domain. Some of the commonly used 
unimodal biometric databases are the Fingerprint Verification Competition (FVC) databases 
(Maio et al., 2002; Maio et al., 2004), the Carnegie Mellon University Pose, Illumination, and 
Expression (CMU-PIE) face database (Sim et al, 2003), the FERET face database (Phillips et al., 
2000b) and the Chinese Academy of Sciences - Institute of Automation (CASIA) iris image 
database (Ma et al., 2003). These unimodal biometric databases can be used for evaluating 
multi-sensor, multi-instance, multi-sample and multi-algorithm biometric systems. 
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Feature dimensionality, 31 
Feature extraction, 6 
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Fusion, see Information Fusion 
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management, 1 
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Likelihood ratio test, 104 
Linear Discriminant Analysis, 68, 165 
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Logistic regression, 57, 72 

M2VTS multimodal database, 125, 176 
MAD, see Median absolute deviation 
Majority voting, 74 
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Mean rule, 95 
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Measurement level fusion, see Score level fusion 
Median absolute deviation, 67, 116 
Median normalization, 67, 116 
Median rule, 97 
Min rule, 96 
Min score fusion, 113 
Min-max normalization, 67, 114 
Minimum error-rate classification rule, 93 
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Multi-algorithm systems, 46 
Multi-instance systems, 47 
Multi-sample systems, 48 
Multi-sensor systems, 44 
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Multimodal biometric database, 176 
Multimodal biometric systems, 49 
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Pattern recognition system, 5 
Performance, 19, 173 
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Product rule, 94 
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Rank level fusion, 57, 70 
Receiver Operating Characteristic curve, 12 
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Scenario evaluation, 174 
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Sensor, 5 
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Signature, 23 
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Sklar's theorem, 108 
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Social choice functions, 37 
Soft biometric likelihoods, 168 
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Standards, see Biometric standards 
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Sum rule, 94 
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System database, 7 
System evaluation, 173 



198 INDEX 

Tanh normalization, 117 
Technology evaluation, 173 
Template, 7 
Template improvement, 65 
Template update, 65 
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User-specific score fusion, 131 
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